DSL Device Driver User Guide
Version 0.1

[image: image1.png]TEXAS INSTRUMENTS
TECHNOLOGY

[image: image2.png]

DSLDK

User Guide

Important Notice: The products and services of Texas Instruments and its subsidiaries described herein are sold subject to our standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute our approval, warranty or endorsement thereof.

Copyright © 2007 Texas Instruments Incorporated

Revision: 0.4

Revision Date: February 7, 2006

Texas Instruments Inc.

Foreword

This document provides the description for building and interfacing with TI’s DSL device driver on Linux OS reference platform.

Revision History

	Rev.
	Date
	Description
	Author

	0.1
	10/11/2006
	Created.
	

	0.2
	12/29/2006
	Revised.
	

	0.3
	01/12/2007
	DSL DSP firmware name change.
	

	0.4
	02/07/2007
	Remove unused references.
	

Contents

2Foreword

2Revision History

3Contents

41
Introduction

52
References

63
Driver Architecture

74
Directory Structure

74.1
dsl_drv

74.1.1
src

74.1.1.1
ddc

84.1.1.2
dda/linux

84.1.2
docs

95
User Command Interface

106
Proc File Entry

117
Environment Variable

128
Driver Functionality Description

128.1
Driver initialization

128.2
Packet transmission

128.3
Packet Reception

139
Build Environment

1 Introduction

This document describes the DSL device driver. The details of CPSAR HAL and DSL HAL are excluded from this documentation.

2 References

[1]
RGDK 1.0 Release Notes.

3 Driver Architecture

On Linux, DSL driver is built as dynamically loadable modules. Figure 1 below shows the functional interfaces and software delineation of DSL driver.

4 Directory Structure

4.1 dsl_drv

4.1.1 src

This directory contains driver DDA/DDC source code.

4.1.1.1 ddc

This directory contains OS-independent DSL Driver Core (DDC) source code files.

The list of DDC files is given in the following table.

Table 1. DSL DDC Files

	Files
	Description

	ddc_clear_eoc.c
	Contains Clear EOC processing functions.

	ddc_common.c
	Contains miscellaneous functions including statistics reporting.

	ddc_init_close.c
	Contains initialization and closure processing functions.

	ddc_dsl_api.h
	Header file for DSL DDC API functions.

	ddc_ti_dsl.h
	Primary header file.

	ddc_txrx.c
	Contains packet transmission/reception processing functions.

	dev_host_interface.h
	Header file for DSLSS DSP Host Interface.

	dsl_hal_api.c
	DSL HAL API functions.

	dsl_hal_api.h
	Header file for DSL HAL API functions.

	dsl_hal_support.c
	DSL HAL support functions.

	dsl_hal_support.h
	Header file for DSL HAL support functions.

	dsl_hal_csl.c
	DSL HAL chip support library functions.

	dsl_hal_csl.h
	Header file for DSL HAL chip support library functions.

	ur0800mp.bin
	DSLSS DSP executable file for ADSL Annex A.

	ur0800db.bin
	DSLSS DSP executable file for ADSL Annex B.

	ddc_sar_init.c
	SAR HAL initialization and closure processing functions.

	ddc_sar_txrx.c
	SAR HAL packet transmission and reception processing functions.

	av_sar_firm.h
	SAR PDSP firmware.

	cslr_cpsar.h
	Header file for SAR HAL functions.

	ddc.h
	Header file for SAR HAL functions.

	ddc_cpsar.h
	Header file for SAR HAL functions.

	ddc_cpsarcfg.h
	Header file for SAR HAL functions.

	ddc_cpsardrv.h
	Header file for SAR HAL functions.

	ddc_netdev.h
	Header file for SAR HAL functions.

4.1.1.2 dda/linux

This directory contains OS-dependent DSL Driver Adaptation (DDA) Layer source code files.

This includes DDA for Linux 2.6.

The list of DDA files is given in the following table.

Table 2. DSL DDA Files

	Files
	Description

	dda_common.c
	Contains miscellaneous OS-dependent functions provided.

	dda_init_close.c
	Contains OS-dependent initialization and closure processing functions.

	dda_input.c
	Contains OS-dependent environment variables processing functions.

	dda_input.h
	Header file for environment variables processing

	dda_ti_dsl.h
	Primary OS-dependent header file.

	dda_txrx.c
	Contains OS-dependent packet transmission/reception processing functions.

4.1.2 docs

This directory contains driver documents.

5 User Command Interface

On Linux, DSL driver provides a single command interface that user application can call to pass command or information to the driver. To access this interface, user application needs to write a string to the proc file /proc/sys/dev/dslmod with the following,

echo command > /proc/sys/dev/dslmod

The list of commands supported is given in the following table. The commands are in string format. For example,

echo T1413 > /proc/sys/dev/dslmod

Table 3. User Command Description

	Command
	Description

	T1413
	Set DSL training mode to T1.413.

	GDMT
	Set DSL training mode to G.dmt.

	GLITE
	Set DSL training mode to G.Lite.

	MMOD
	Set DSL training mode to multi mode.

	NMOD
	Set no training mode.

	AD2MOD
	Set DSL training mode to ADSL2

	AD2DEL
	Set DSL training mode to ADSL2 DELT

	A2PMOD
	Set DSL training mode to ADSL2+ mode

	A2PDEL
	Set DSL training mode to ADSL2+ DELT mode

	tmode nn
	Set DSL training mode based on bit cmd, where nn is the two-digit hex number, which specifies the training mode.

	Exxxpyyyyc
	Send end to end F5 cells with VPI=xxx and VCI=yyyy. xxx and yyyy are in decimal.

	Sxxxpyyyyc
	Send seg to seg F5 cells with VPI=xxx and VCI=yyyy. xxx and yyyy are in decimal.

	exxxp0c
	Send end to end F4 cells with VPI=xxx.

	sxxxp0c
	Send segment F4 cells with VPI=xxx.

	exxxpyyyycdzzzt
	Send end to end F5 cells with VPI=xxx and VCI=yyyy. xxx and yyyy are in decimal. zzz is time out value in millisecond

	sxxxpyyyycdzzzt
	Send seg to seg F5 cells with VPI=xxx and VCI=yyyy. xxx and yyyy are in decimal. zzz is time out value in millisecond.

	idle
	Set DSL modem to IDLE.

	retrain
	Force DSL modem to re-train

6 Proc File Entry

On Linux, DSL driver provides several proc files for user application to retrieve information from the driver. The list of Proc entries supported is given in the following table.

Table 4. Proc File Description

	File name and path
	Description

	/proc/avalanche/avsar_modem_stat
	Statistics for SAR and DSL.

	/proc/avalanche/avsar_modem_training
	First line: modem training state.

	/proc/avalanche/avsar_ver
	Version information for the Driver, PDSP, DSP, and etc.

	/proc/avalanche/avsar_oam_ping
	Oam ping result.

	/proc/avalanche/avsar_pvc_table
	Received PVC table information.

	/proc/avalanche/avsar_sarhal_stats
	Unformatted SAR HAL statistics. (debug only)

	/proc/avalanche/avsar_channels
	Channel information. (debug only)

7 Environment Variable

The environment variables used by DSL driver are given in the following table. Those variables that should not be modified by user applications are excluded from the list (Italic).

Table 5. Environment Variable Description

	Name
	Type
	Description

	 ATM_ETSI
	 String
	ETSI address string.

	 autopvc_enable
	 Integer
	0: off; 1: on.

	 Bitswap
	 Integer
	0: off; 1: on.

	 cpufrequency
	 Integer
	Host CPU frequency.

	 dgas_polarity
	 Integer
	DSLSS DSP setting.

	 DSL_BIT_TMODE
	 Integer
	0: off; 1: on.

	 DSL_FEATURE_CNTL_0
	 Integer
	DSLSS DSP IOP setting.

	 DSL_FEATURE_CNTL_1
	 Integer
	DSLSS DSP IOP setting.

	 DSL_PHY_CNTL_0
	 Integer
	DSLSS DSP PHY control setting.

	 DSL_PHY_CNTL_1
	 Integer
	DSLSS DSP PHY control setting.

	 enable_margin_retrain
	 Integer
	0: off; 1: on.

	 enable_rate_adapt
	 Integer
	0: off; 1: on.

	 eoc_vendor_id
	 Hex
	Eight (8) ASCII bytes.

	 eoc_vendor_revision
	 Integer
	4-byte ADSL1 EOC vendor revision.

	 eoc_vendor_serialnum
	 String
	32-byte EOC vendor serial number.

	 fine_gain_control
	 Integer
	DSLSS DSP setting.

	 fine_gain_value
	 Hex
	DSLSS DSP setting.

	 invntry_vernum
	 Integer
	16-byte ADSL2/2+ EOC vendor revision.

	 los_alarm
	 Integer
	0: off; 1: on.

	 margin_threshold
	 Integer
	Margin threshold.

	 maximum_bits_per_carrier
	 Integer
	DSLSS DSP setting.

	 maximum_interleave_depth
	 Integer
	DSLSS DSP setting.

	 modulation
	 Integer
	Modem training mode same as defined in User Command.

	 oam_lb_timeout
	 Integer
	OAM loopback timeout in milliseconds.

	 pair_selection
	 Integer
	DSLSS DSP setting.

	 sar_ipacemax
	 Integer
	SAR interrupt pacing value

	 SarRxBuf
	 Integer
	Number of Rx buffers per channel.

	 SarRxMax
	 Integer
	Number of Rx buffers to be serviced per interrupt.

	 SarTxBuf
	 Integer
	Number of Tx buffers per channel.

	 SarTxMax
	 Integer
	Number of Tx buffers to be serviced per interrupt.

	 trellis
	 Integer
	0: off; 1: on.

	 TurboDSL
	 Integer
	0: off; 1: on.

8 Driver Functionality Description

8.1 Driver initialization

DSL driver is initialized through the DDA_atm_detect function. The DDA_atm_detect function allocates memory for the private data structure used by DSL driver and calls the initialization routines of SAR HAL and DSL HAL to initialize both SAR and DSL subsystems . Upon completion of DDA_atm_detect function the driver is ready to accept socket calls from ATM applications at user level. Interrupt registrations are also handled in DDA_atm_detect.

The DDA_atm_open function is called when a user applications such as PPPoE or BR2684ctl makes a socket call to the driver to open a new connection to the SAR interface. The DDA_atm_open function initializes the VCC structure with the appropriate ATM VPI/VCI and QoS options.

The ATM device operation structure is shown below.

static const struct atmdev_ops DDA_atm_ops = {

 open: DDA_atm_open,

 close: DDA_atm_close,

 ioctl: DDA_atm_ioctl,

 send: DDA_atm_send,

 change_qos: DDA_atm_change_qos,

};

8.2 Packet transmission

Once a proper VPI/VCI pair is initialized through user application, data can be transmitted through the DDA_atm_send function. The DDA_atm_send function checks the status of DSL interface and DSL modem to ensure that a valid connection is available to send data on. The type of data is also checked and a determination is made to whether to queue the packet to high priority queue or low priority queue for further data transmission. The driver checks whether there is packets to send in every DDA_atm_send call. If there is any packet to be sent, the driver will locate channel information from vcc structure and call SAR HAL send routine to send out packet. The packets are de-queued from priority queue first. Upon completion, the SAR interrupt is handled through the DDA_atm_sar_tx_irq function. The DDA_atm_sar_tx_irq calls the interrupt handle routine of SAR HAL which in turn calls the DDA_atm_send_complete to free the packets.

8.3 Packet Reception

The ATM driver processes the reception of incoming packets (i.e., from DSL interface) through the registered SAR interrupt (DDA_atm_sar_rx_irq). DDA_atm_sar_rx_irq calls SAR HAL interrupt handling routine which in turn calls the DDA_atm_receive to pass on received packets. If no errors exist within the PDU, skb is passed to the IP stack through the atm_charge and vcc->push routines. The SAR HAL will call DDA_atm_allocate_rx_skb to replenish the used skb.

9 Build Environment

Refer to [1] for detailed description of how to build a RGDK image with DSL device driver included.

OS (br2684ctl)

proc files

Packets to OS

CLI or proc file/ioctl

Driver (un)load

Packets from OS

RX Routines

TX Routines

Init / Close

VC open/close

OS: Linux operating system.

CLI: Command line interface or any user space applications.

Proc file: Application and kernel (driver) interface for Linux.

IOCTL: I/O interface between application and the driver.

Figure 1. DSL driver architecture and module interactions.

Linux DSL Driver

Software covered by this document.

Hardware

ISR

Datapump

OS Wrapper/Interface

DSL HAL

OS Wrapper/Interface

SAR HAL & Firmware

Texas Instruments Confidential

8

