[image: image1.jpg]{'P TEXAS
INSTRUMENTS

[image: image2.png]

15
TNETD4000C Management Access User’s Guide

DSL HAL Programmer’s Guide
Version 1.0

DSL CPE Software
DMT DSL Customer Premise Equipment for DSL Operations

Important Notice: The products and services of Texas Instruments and its subsidiaries described herein are sold subject to our standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute our approval, warranty or endorsement thereof.

Copyright © 2006-2007 Texas Instruments Incorporated.

Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current and complete.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Preface

Read this first

About this Manual

Welcome to the UR8 DSL Hardware Abstraction Layer, or HAL for short. The HAL is a collection of Application Programming Interfaces (APIs) used to configure and control all the on-chip peripherals. It is intended to make it easier for developers by eliminating much of the tedious grunt-work usually needed to get algorithms up and running in a real system. This reference Guide provides all the necessary information to produce a robust, efficient and standards compliant DSL modem using the UR8 chipset. Some of the advantages offered by the

HAL include: peripheral ease of use, compatibility between devices, shortened development time, portability, standardization, and hardware abstraction.

The Texas Instruments UR8 DSL chipset consists of a single-chip DSL PHY which provides an ultra integrated, fully functional solution for Customer Premise Equipment like Bridge/Router System on a chip. It integrates a broadband communications processor and peripherals, DSL physical layer, DSL line driver, USB physical layer, Ethernet physical layer and power management for use in remote terminal (RT) modems for residential and small office applications. It is the most densely integrated system-on-a-chip ever offered to the DSL CPE market by Texas Instruments.
This document contains a reference for the DSL HAL APIs and is organized as follows:

· Overview – a high level overview of the HAL

· HAL API Module definitions – a description of the individual modules that make up the DSL HAL

· HAL API Reference – a low level description of the DSL HAL APIs

· OS Shim API Reference – a low level description of the Operating System Shim layer APIs used to interface with the DSL HAL APIs.

How to use this manual

The information in this document describes the contents of the DSL HAL library in several different ways.

· Chapter 1 provides a high level overview of the HAL and its scope of operation with respect to the system as a whole. This chapter also gives a brief introduction to the chipset.

· Chapter 2 provides an introduction to the functional API modules and spells out the function that the APIs classified under that module perform.

· Chapter 3 gives a listing of all the DSL HAL API functions, macros, enumerations, type definitions, global variables, structures and constants. This chapter uses examples to show how these elements are used in applications.

· Chapter 4 gives a listing of all the OS Shim APIs that are used to interface the Operating System on which the application is running with the lower layer HAL APIs.

Document Revision History

	Rev#
	Date
	Description/Changes
	Owner

	1.0
	February 7, 2007
	Initial Draft Version based on AR7.
	TI

CONTENTS

3Preface

3About this Manual

3How to use this manual

71.1
DSL HAL Overview

71.2
Hardware Overview

71.3
UR8 Host Interface Overview

8Chapter 2

82.1
Modem Initialization and Configuration

82.2
Messaging / Monitoring

92.3
DSP Control

92.4
Statistics / Information

102.5
Modem Feature Settings

102.5.1
Feature Configuration

102.5.2
Margin Control

112.5.3
EOC Parameters

112.6
GPIO Customization

112.7
Hybrid Switching

112.7.1
Hybrid Switch Process Flow

122.8
Generic APIs

122.9
API Catalogue

14Chapter 3

143.1
DSL HAL Basic APIs

143.1.1
Introduction

143.1.2
dslhal_api_dslStartup

153.1.3
dslhal_api_dslShutdown

153.1.4
dslhal_api_pollTrainingStatus

163.1.5
dslhal_api_acknowledgeInterrupt

163.1.6
dslhal_api_handleTrainingInterrupt

173.1.7
dslhal_api_gatherStatistics

173.1.8
dslhal_api_getDslHalVersion

173.1.9
dslhal_api_getDspVersion

183.2
DSL HAL Advanced APIs

183.2.1
Introduction

183.2.2
dslhal_api_setTrainingMode

193.2.3
dslhal_api_dslRetrain

193.2.4
dslhal_api_sendIdle

203.2.5
dslhal_api_sendQuiet

203.2.6
dslhal_api_setMarginMonitorFlags

213.2.7
dslhal_api_setMarginThreshold

213.2.8
dslhal_api_disableLosAlarm

223.2.9
dslhal_api_setEocVendorId

223.2.10
dslhal_api_setEocSerialNumber

233.2.11
dslhal_api_setEocRevisionNumber

233.2.12
dslhal_api_setAturConfig

243.2.13
dslhal_api_setTrellisFlag

243.2.14
dslhal_api_setRateAdaptFlag

253.2.15
dslhal_api_setMaxBitsPerCarrier (old)

253.2.16
dslhal_api_setMaxBitsPerCarrierUpstream (new)

253.2.17
dslhal_api_setMaxBitsPerCarrierDownstream

263.2.18
dslhal_api_setMaxInterleaverDepth

263.2.19
dslhal_api_disableDspHybridSelect

273.2.20
dslhal_api_reportHybridMetrics

273.2.21
dslhal_api_selectHybrid

283.2.22
dslhal_api_configureLed

293.2.23
dslhal_api_configureDgaspLpr

293.2.24
dslhal_api_sendDgasp

303.2.25
dslhal_api_resetTrainFailureLog

303.2.26
dslhal_api_selectInnerOuterPair

313.2.27
dslhal_api_setPhyFeatureController

313.2.28
dslhal_api_enableDisablePhyFeatures

323.2.29
dslhal_api_readPhyFeatureSettings

323.2.30
dslhal_api_getHLOGpsds

333.2.31
dslhal_api_getQLNpsds

333.2.32
dslhal_api_getSNRpsds

343.3
DSL HAL Generic APIs

343.3.1
Introduction

343.3.2
dslhal_api_dspInterfaceRead

343.3.3
dslhal_api_dspInterfaceWrite

353.4
Host Interface Data Structures

353.4.1
Basic Modem Status

363.4.2
Modem Control

363.4.3
Modem Configuration

373.4.4
Modem Performance Counters

39Chapter 4

394.1
shim_osAllocateMemory

394.2
shim_osMoveMemory

394.3
shim_osFreeMemory

404.4
shim_osStringCmp

404.5
shim_osZeroMemory

404.6
shim_osCriticalEnter

404.7
shim_osCriticalExit

404.8
shim_osWriteBackCache

404.9
dprintf

414.10
shim_osClockWait

414.11
shim_osGetCpuFrequency

Introduction
1.1 DSL HAL Overview

The DSL HAL provides a suite of API functions, constants, macros and structures that speed up development of applications on the Texas Instruments’ 7th generation chipset. The HAL APIs are an interface between the DSL physical layer devices, the peripheral devices and the application running on the communications processor. It helps the application developer use simple functions to initialize and configure hardware and modem parameters without having to worry about how exactly it is done. Using the HAL gives the application the control required to customize the chipset to specific requirements based on field conditions.
The DSL HAL is written primarily in C language with some assembly language for certain diagnostic functions. The library is made up of functional modules that are built and archived into a library file. Each module represents a collection of APIs that perform a common function. The APIs are classified broadly into the following functional categories:

· Modem Initialization and Configuration

· Messaging / Communication

· DSP Control

· Statistics / Informational

· Training Parameter Initialization

· GPIO Customization

DSL HAL Functional Modules
This chapter enumerates the different functional modules that the HAL APIs are broadly classified into. There are APIs that serve multiple functions and hence are included in more than one module. The detailed API listings, the function prototypes, usage information appear in Chapter 3. The modem operation, the host interface structures corresponding to the different Modem operations such as Control, Performance, configuration are also enumerated.

· Modem Initialization and Configuration

· Messaging / Monitoring

· DSP Control

· Statistics / Information

· Modem Feature Settings

· GPIO Customization

1.2 Modem Initialization and Configuration

The host communications processor must interact with the DSP to perform basic modem initialization, configuration and control. Most of this detail is hidden from the programmer inside the driver library.

HAL APIs corresponding to this module:

· dslhal_api_dslStartup (section 3.1.2)

· dslhal_api_dslshutdown (section 3.1.3)

1.3 Messaging / Monitoring

The host processor and the DSP are two major components in the UR8 modem. Hence, the communication between these two blocks is very important. The DSP and the host processor communicate with each other using mailboxes. A mailbox serves as a bi-directional messaging system between the host processor and the DSP. It can be visualized as a data structure that is used to post a command / response to the other processor with accompanying parameters and tags.

There are three mailboxes used for messaging between the DSP and the host processor. There is one mailbox to post commands from host to DSP and another for DSP to host. A third mailbox, the text mailbox is used to post non critical messages in text format to the host processor based on the current training state of the DSP. In general messages pertaining to training, recovery, statistics, diagnostics, overlay and state transition are passed between the host processor and the DSP.

The host processor and the DSP each have their servicing mechanisms for the mailbox messages received. In the host processor, the DSL HAL APIs manage the monitoring and messaging mechanisms. These could be either polling or interrupt based. In the former case, the processor polls the mailboxes at a predetermined time interval for messages and if there is a new message posted in the corresponding mailbox, then appropriate action is taken. In the interrupt driven mechanism, which is the preferred technique, an interrupt with appropriate priority is posted which implies that a new mailbox message has been posted and a corresponding service routine takes required action. For the text mailbox, which transmits non critical messages, there need not necessarily be any action that needs to be taken for some messages, these could just be ignored by the host processor.

HAL APIs corresponding to this module:

· dslhal_api_pollTrainingStatus (section 3.1.4) : Polling based

· dslhal_api_handleTrainingInterrupt (section 3.1.6): Interrupt driven

· dslhal_api_acknowledgeInterrupt (section 3.1.5): Identifies Interrupt source for the handleTrainingInterrupt function above.

1.4 DSP Control

The host processor may optionally send commands through the UR8 management registers to force the modem into a number of states such as IDLE, QUIET and POWERDOWN. These could be used in situations where it is required to follow a sequence out of the normal state machine that the modem goes through, either to recover from some abnormal condition or because some parameters have been changed and other situations where perhaps the modem requires retraining.

The DSL HAL APIs make it possible to send specific commands to the DSP via the mailbox mechanism already explained in section 2.2. The DSP takes appropriate action when it parses the command posted through the mailbox. A detailed listing of the different Commands that can be posted by the host to the DSP are tabulated in section 3.3.2 (DSP Control) below.

HAL APIs corresponding to this module:

· dslhal_api_dslRetrain (section 3.2.3) : to send HOST_ACTREQ to DSP

· dslhal_api_sendIdle (section 3.2.4) : to send HOST_IDLE to DSP

· dslhal_api_sendQuiet (section 3.2.5): to send HOST_QUIET to DSP
1.5 Statistics / Information

A rich set of statistics and performance counters are available through the host interface. These can be used to measure the physical layer performance of the UR8 modem. These include but are not limited to: connect rates, SNR, bit allocations and several other metrics as tabulated in section 3.3.4. All of this information may be read through the UR8 host interface by the host processor at any time after the modem has reached SHOWTIME. The information is updated every DMT super-frame (250 (s).

This module is also comprised of other pieces of information such as the firmware version and the HAL versions. These provide the application user with information that can be used to readily identify the code-load that is running beneath the application.

Almost all the statistics parameters are available through the application interface shared between the DSL HAL and the higher layers of software. The application interface has been reproduced from software in section 3.7 for convenience. Most of the available statistics are self explanatory. Some guidelines on the parameters are provided in section 3.6.

HAL APIs corresponding to this module:

· dslhal_api_gatherStatistics (section 3.1.8): Fetches Statistics
· dslhal_api_getDslHalVersion (section 3.1.9): DSL HAL Version
· dslhal_api_getDspVersion (section 3.1.10): DSP firmware revision
1.6 Modem Feature Settings

A rich set of optional functions can be used to control the different features of the modem using the control hooks available in the UR8 host interface. Some of the available options using the DSL HAL APIs are listed below using examples:

1.6.1 Feature Configuration

There are several features of the DSL modem that are configurable through the host interface, which would alter the way the modem works. For example, the training mode is a common feature that could be changed depending upon which CO the modem connects to or who the service provider is. There are other features which can be turned on/off depending upon requirement. DSL HAL APIs make it possible for the application software to customize these parameters so that the modem operates in a desired mode. Typically a modem retrain would be required so that these changes take effect if the modem has not trained already.

HAL APIs corresponding to this module:

· dslhal_api_setTrainingMode (section 3.2.2)

· dslhal_api_setTrellisFlag (section 3.2.13)
· dslhal_api_setRateAdaptFlag (section 3.2.14)
· dslhal_api_setMaxBitsPerCarrier (section 3.2.15)(old)
· dslhal_api_setMaxBitsPerCarrierUpstream (section 3.2.16)(new)
· dslhal_api_setMaxBitsPerCarrierDownstream (section 3.2.17)
· dslhal_api_setMaxInterleaverDepth (section 3.2.16)
1.6.2 Margin Control

The SHOWTIME margin threshold is a commonly used parameter to control the DSL modem. If the margin falls below a set threshold, then the modem drops out of sync. This feature can be enabled or disabled by turning the margin monitor at showtime or during training on/off. If the margin monitor is turned off, then the modem remains in sync despite the margin dropping below the margin threshold value set.

Margin has its implications when there are applications like Upstream PSD measurements that require the modem to be in sync all the time or atleast to give the impression that it never loses sync. This can be achieved by disabling the margin monitor to ensure that even if the margin falls below the threshold, the modem does not lose sync. But disabling the margin monitor alone does not ensure that the modem will remain in sync; in order to achieve this, it is necessary to turn off all the loss of sync alarms. This would make is possible to make upstream PSD measurements.
HAL APIs corresponding to this module:

· dslhal_api_setMarginMonitorFlags (section 3.2.6) : Enable/Disable margin monitor.

· dslhal_api_setMarginThreshold (section 3.2.7): Set Margin Threshold in dB.
· dslhal_api_disableLosAlarm (section 3.2.8): Disable loss of sync alarms.
1.6.3 EOC Parameters

The Embedded operations Channel (EOC) provides an autonomous means of communication between the ATU-R and the ATU-C and is used for ATU-R status information and DSL performance monitoring. It maybe necessary to configure certain EOC registers so that the information can be made available to the ATU-C. A detailed description of the EOC and how it works can be found in the ITU Standards.

The DSL HAL APIs make it possible to configure the EOC registers such as the VendorID, Revision number, Serial number and the ATU-R configuration register via the host interface.

HAL APIs corresponding to this module:

· dslhal_api_setEocVendorId (section 3.2.9)

· dslhal_api_setEocSerialNumber (section 3.2.10)
· dslhal_api_setEocRevisionNumber (section 3.2.11)
· dslhal_api_setAturConfig (section 3.2.12)

1.7 GPIO Customization

The General Purpose Input/Output pins are available for a variety of applications to the designer. These GPIOs can be MIPS . .The MIPS processor can customize or configure the GPIOs in the Dsl Subsystem through the DSP via specific flags and variables in the DSP-Host host interface. The applications for the GPIO include LED control, Dying Gasp configuration, etc. There are DSL Hal APIs which support customization of LEDs and the Dying Gasp LPR signal.

· dslhal_api_configureLed (section 3.2.20)

· dslhal_api_configureDgaspLpr (section 3.2.21)
1.8 Generic APIs

These DSL HAL APIs allow reads/writes to generic locations in the DSP to Host Interface. These are explained in greater detail in section 3.5

· dslhal_api_dspInterfaceRead (section 3.5.4)

· dslhal_api_dspInterfaceWrite (section 3.5.4)

1.9 API Catalogue

	Initialization APIs
	· dslhal_api_dslStartup

· dslhal_api_dslshutdown

	Monitoring/ Servicing APIs
	· dslhal_api_pollTrainingStatus
· dslhal_api_handleTrainingInterrupt
· dslhal_api_acknowledgeInterrupt

	DSP Control APIs
	· dslhal_api_dslRetrain
· dslhal_api_sendIdle
· dslhal_api_sendQuiet

	Statistics APIs
	· dslhal_api_gatherStatistics
· dslhal_api_getDslHalVersion
· dslhal_api_getDspVersion

	Modem Configuration APIs
	· dslhal_api_setTrainingMode

· dslhal_api_setTrellisFlag
· dslhal_api_setRateAdaptFlag
· dslhal_api_setMaxBitsPerCarrierUpstream
· dslhal_api_setMaxInterleaverDepth
· dslhal_api_setPhyFeatureController
· dslhal_api_enableDisablePhyFeatures
· dslhal_api_readPhyFeatureSettings

	Margin APIs
	· dslhal_api_setMarginMonitorFlags
· dslhal_api_setMarginThreshold
· dslhal_api_disableLosAlarm

	EOC APIs
	· dslhal_api_setEocVendorId

· dslhal_api_setEocSerialNumber
· dslhal_api_setEocRevisionNumber
· dslhal_api_setAturConfig

	GPIO Control
	· dslhal_api_configureLed

· dslhal_api_configureDgaspLpr

	Generic APIs
	· dslhal_api_dspInterfaceRead

· dslhal_api_dspInterfaceWrite

DSL HAL API Reference

1.10 DSL HAL Basic APIs

1.10.1 Introduction

This section describes the basic API functions provided by the DSL Driver library to control an UR8 modem. The purpose of these API’s is to hide the complexity of making the UR8 modem function. These API functions also make access to modem status easy and clean by hiding the internal structures of the modem software. Any application or driver developer wishing to use an UR8 DSL modem only requires these API functions to gain full functionality from it. These API’s are compiled in the form of a library that a driver or an application can use. The data structures and variables that are needed in the application or driver are defined in the header file that comes with the library. The API’s require access to certain OS specific run time support functions. The interface (shim) layer has been created to map these functions call to OS specific run time support functions.

1.10.2 dslhal_api_dslStartup

unsigned int dslhal_api_dslStartup(PITIDSLHW_T ppIHw)

Input:

PITIDSLHW_T

ppIHw
Returns:
0 if successful

1 if not successful
This function initializes the UR8 modem. It allocates resources, releases the reset to the UR8 chipset, resets the broadband interface of the host processor, loads the UR8 modem data pump firmware and finally instructs the UR8 to start executing the modem firmware. The parameter ppIHw is a pointer to the data structure that has all of the variables needed to keep track of the values stored in the shared data structures of the modem software. Applications or drivers using these API’s must declare a pointer to a structure of type ITIDSLHW before calling this function. This function allocates memory for this structure and returns the pointer to it as it is used as a parameter for most of the UR8 API functions. This function downloads the core modem firmware contained file (ur0800mp.bin) section by section using the section information contained within its structure.

Inside this function, to handle Inter-Op related PHY feature bits, it checks global variables _dsl_Feature_0, _dsl_Feature_1, _dsl_Feature_0_defined and _dsl_Feature_1_defined (all unsigned int and initialized to 0) after dsp code is downloaded. Both phyCtrlWord (see dslhal_api_setPhyFeatureController()) and phyFeatureSet (see dslhal_api_enableDisablePhyFeatures()) of INTEROP_FEATURELIST0_PARAMID will be set to _dsl_Feature_0 if _dsl_Feature_0_defined is 1. Similarly phyCtrlWord and phyFeatureSet of INTEROP_FEATURELIST1_PARAMID will be set to _dsl_Feature_1 if _dsl_Feature_1_defined is 1. It is expected that _dsl_Feature_0 and _dsl_Feature_values are set in bootloader environment variables, paersed by application and set _dsl_Feature_0_defined and _dsl_Feature_1_defined accordingly, before calling dslhal_api_dslStartup.
To handle Non-Inter-Op related PHY feature bits, it checks global variables _dsl_PhyControl_0, _dsl_PhyControl_1, _dsl_PhyControl_0_defined and _dsl_PhyControl_1_defined (all unsigned int and initialized to 0) after dsp code is downloaded. Both phyCtrlWord (see dslhal_api_setPhyFeatureController()) and phyFeatureSet (see dslhal_api_enableDisablePhyFeatures()) of DSL_PHY_FEATURELIST0_PARAMID will be set to _dsl_PhyControl_0 if _dsl_PhyControl_0_defined is 1. Similarly phyCtrlWord and phyFeatureSet of DSL_PHY_FEATURELIST0_PARAMID will be set to _dsl_PhyControl_1 if _dsl_PhyControl_1_defined is 1. It is expected that _dsl_PhyControl_0, _dsl_PhyControl_1 and values are set in bootloader environment variables, paersed by application and set _dsl_PhyControl_0_defined and _dsl_PhyControl_1_defined accordingly, before calling dslhal_api_dslStartup.
Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

1.10.3 dslhal_api_dslShutdown

VOID dslhal_api_dslshutdown(PITIDSLHW_T ppIHw)

Input:

PITIDSLHW_T

ppIHw

Returns:
VOID

This function shuts down the UR8 modem and frees up all the resources. Before doing so it sends a DSLSS_SHUTDOWN command to the UR8 modem. This command forces the DSP to stop all its operations so that the modem can be shutdown reliably. This includes any data transfer across the interfaces to the host or the ATM TC. This should be the last function that the SAR driver should call before it exits itself. Access to any other API functions after this function will cause undefined behavior. Polling on the dsl interface is disabled in this function since if this is not done, it might cause processor lockup (see note below).

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

 /* Terminate the Connection */

 dslhal_api_dslShutdown(ppIHw);

1.10.4 dslhal_api_pollTrainingStatus

unsigned int dslhal_api_pollTrainingStatus(PTIDLSHW_T ppIHw)

Input:

PITIDSLHW_T
ppIHw
Returns:
UR8 modem training state

-1 if failed

This function decodes and acts upon the messages send by the UR8 modem to the host processor. If the modem is idle (either at start up or because the connection has been dropped) it issues commands to the modem to start training. If any code overlays are requested it loads them into the external interleave SRAM. If the modem is detected to have dropped out of the TC_SYNC state then the DSL interface polling(DSL interface of Avalanche) is stopped. Applications or drivers using this API have to turn on the DSL interface polling using the enDslIfPolling() function once the TC_SYNC state has been acquired. It is expected that the user will call this decode status function indefinitely until the variable lConnected becomes true. The lConnected variable defined in the PTIDSLHW_T data structure keeps track of the ATM cell delineation state. Using this approach (of polling the modem status) makes UR8 modem training a blocking task. Once the modem is trained and the ATM cell delineation state has moved to TC_SYNC (ie lConnected is true) it is recommended that you create a background task to poll this function at least every 200 msec. This function itself is non-blocking in that it will return before the UR8 modem has reached in TC sync state (after SHOWTIME). This function also updates the training history indicating the number of failed training attempts prior to achieving SHOWTIME and also indicates the specific sub-state at which the the training attempt failed. These are made available through the application interface structures.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

 dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.5 dslhal_api_acknowledgeInterrupt

unsigned int dslhal_api_acknowledgeInterrupt(PTIDLSHW_T ppIHw)

Input:

PITIDSLHW_T
ppIHw
Returns:
Interrupt Source

-1 if failed

This function reads the DSP interrupt source register on the UR8 shared memory and if an interrupt is detected, it goes ahead and clears the interrupt source in the DSP interrupt clear register, records the source that interrupts the MIPS and reports this as a return value. Common examples of interrupt sources are Mailbox interrupts or Modem State Bit field interrupts from the DSP. The calling function in the application needs to act upon the interrupt received based on the source reported by this function. For example, the handleInterrupt function, which serves as a message handler, could be called immediately after the source of the interrupt is identified by this function.

Usage:

 Refer to the usage in Section 3.1.6

1.10.6 dslhal_api_handleTrainingInterrupt

unsigned int dslhal_api_handleTrainingInterrupt(PITIDSLHW_T ppIHw, int intrSource)

Input:

PITIDSLHW_T
ppIHw;

 int intrSource;
Return:

UR8 modem training state

 -1 if not Successful

This function handles any interrupts generated by the UR8 modem. The UR8 modem generates an interrupt each time it queues a message for the host processor. This function accepts a parameter for the source of the interrupt that it is trying to service. Common examples of interrupt sources are Mailbox interrupts or Modem State Bit field interrupts from the DSP. Based on the source, this function decodes and acts upon either the mailbox message sent by the DSP or responds to state transitions recorded in the modem state bit field. This function is void if all the interrupt masks are enabled, meaning that no interrupt is generated by the DSP. This function call also requires the application or driver software to provide additional functionality when registering this as the interrupt service routine because no interrupt is generated after the modem reaches SHOWTIME and the ATM cell delineator becomes synchronized (the software must monitor the variable lConnected to detect when it is synchronized). This function also updates the training history indicating the number of failed training attempts prior to achieving SHOWTIME and also indicates the specific sub-state at which the the training attempt failed. These are made available through the application interface structures. The function returns the state of the modem during training.

Usage:

PITIDSLHW_T
ppIHw;

int intSrc;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Start Interrupt Handler & Train Modem */

while(ppIHw->lConnected!=1)

 {

intSrc=dslhal_api_acknowledgeInterrupt(ppIHw);

dslhal_api_handleTrainingInterrupt(ppIHw,intSrc);

}

printf(“UR8 Modem is ShowTime\n”);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.7 dslhal_api_gatherStatistics

unsigned int dslhal_api_gatherStatistics(PITIDSLHW_T ppIHw)

Input:

PITIDSLHW_T
ppIHw

Returns:
0 if Successful

1 if not Successful

This function copies the ATM, TC and AAL5 statistics from the UR8 modem to variables defined in the TIOIDINFO data structure (refer to dsl.h). These variables include defect counters and performance metrics generated by UR8 modem firmware. This function only returns valid metrics after the UR8 modem has reached SHOWTIME. The performance metrics can help applications or drivers monitor the health of the modem connection. Smart applications or drivers can instruct the modem to initiate a retrain when the performance drops below certain metrics. The UR8 modem will automatically drop the connection and retrain when it loses synchronization. Where the host processor has forced the UR8 modem to retrain, the upstream and downstream connection information will be recalculated for both the fast and interleave paths. This function makes a call to dslhal_api_advancedStats function that is not described in this manual, to gather some of the advanced PHY layer statistics into the application structure.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

 dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Collect Error and Statistics */

dslhal_api_gatherStatistics(ppIHw);

printf(“Total Idle Cells Transmitted: %d\n”, ppIHw->AppData.tx_gd_cell_cnt);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.8 dslhal_api_getDslHalVersion

void dslhal_api_getDslHalVersion(VOID *pVer)

Input:

VOID

*pVer

This function returns the version of the DSL driver being used. This function can be called at any time. The convention used to describe the version numbering information of DSL driver is “Major.Minor.Bugfixes”. The example below shows how this is done.

Usage:

DSLVer

Ver;

dslhal_api_getDslHalVersion(&Ver);

printf(“UR8 Modem Firmware Version: %2d.%2d.%2d\n”, (unsigned int) Ver.major, (unsigned int) Ver.minor

(unsigned int) Ver.bugfix);

1.10.9 dslhal_api_getDspVersion

unsigned int dslhal_api_getDspVersion(PITIDSLHW_T ppIHw, VOID *pVer)

Input:

PITIDSLHW_T

ppIHw

VOID

*pVer

Returns:
0 if Successful

1 if not Successful

This function returns the version of the UR8 modem firmware. This function can be called anytime after init has been called and before dslhal_api_dslShutdown has been called. The convention used to describe the version numbering information of UR8 modem firmware is “Major.Minor.Bugfixes”. The data structure DSPVer defined in dsl.h can be used to typecast the VOID pointer pVer. The example below shows how this is done.

Usage:

PITIDSLHW_T
ppIHw;

void

Ver;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Get the UR8 Modem Firmware Version */

dslhal_api_getDspVersion(ppIHw, &Ver);

printf(“UR8 Modem Firmware Version: %2d.%2d.%2d\n”, (unsigned int) Ver.major, (unsigned int) Ver.minor

(unsigned int) Ver.bugfix);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

DSL HAL Advanced APIs

1.10.10 Introduction

This section describes the advanced API functions provided by the DSL Driver library to control an UR8 modem. The purpose of these API’s is to increase the control over modem parameters beyond the scope of the fundamental APIs. These API’s are compiled into the same library explained in section 3.1.

1.10.11 dslhal_api_setTrainingMode

unsigned int dslhal_api_setTrainingMode(PITIDSLHW_T ppIHw, unsigned int TrainMode)

Input:
 PITIDSLHW_T

ppIHw

 unsigned int

TrainMode

Returns:
0 if Successful

1 if Not Successful.

This API sets the StdMode specified in table 5 and would force the modem to train in the desired mode passed through the parameter TrainMode. This API provides a method to change the desired training mode after the modem has gone to showtime. However, the new settings will take effect only when the modem retrains if it is called when the modem is trained up.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Force modem to train in T1.413*/

dslhal_api_setTrainingMode (ppIHw,1);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.12 dslhal_api_dslRetrain

unsigned int dslhal_api_dslRetrain(PITIDSLHW_T ppIHw)

Input:
 PITIDSLHW_T

ppIHw

Returns:
0 if Successful

Error Code if Not Successful.

This API forces the modem to retrain. It drops the connection and starts the training sequence again by sending a HOST_ACTREQ to the modem. This API can be called at any phase of modem operation.

Usage:

PITIDSLHW_T
ppIHw;

dslhal_api_dslStartup(&ppIHw); /* Initialize UR8 Modem */

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Force UR8 to Retrain */

dslhal_api_dslRetrain(ppIHw);

dslhal_api_dslShutdown(ppIHw); /* Terminate the Connection */

1.10.13 dslhal_api_sendIdle

unsigned int dslhal_api_sendIdle (PITIDSLHW_T ppIHw)

 Input:
 PITIDSLHW_T

ppIHw

Returns:
0 if Successful

Error Code if Not Successful.

This function forces the modem to go into an idle state by sending the HOST_IDLE message. This would halt the modem in whichever state it is and whatever function it is performing. The modem would remain in this state unless it is forced into another state by the host.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Force UR8 in Idle state */

dslhal_api_sendIdle(ppIHw);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.14 dslhal_api_sendQuiet

unsigned int dslhal_api_sendQuiet (PITIDSLHW_T ppIHw)

Input:
 PITIDSLHW_T

ppIHw

Returns:
0 if Successful

1 if Not Successful.

This API forces the modem to go to a quiet state from where it reinitializes training after 4 seconds. The delay of 4 seconds is intentionally introduced to allow the ATUC enough time to abort its state of training/showtime.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Force UR8 in Quiet state */

dslhal_api_sendQuiet(ppIHw);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.15 dslhal_api_setMarginMonitorFlags

unsigned int dslhal_api_setMarginMonitorFlags(PITIDSLHW_T ppIHw,

 unsigned int trainflag, unsigned int shwtflag)

 Input:
 PITIDSLHW_T

ppIHw

unsigned int

trainflag
// if this is set, training MarginMonitor flag is set

unsigned int

shwtflag
// if this is set, showtime MarginMonitor flag is set

 Returns:
0 if Successful

1 if Not Successful.

This function enables/disables controls for a modem retrain during training and showtime depending upon the TRUE/FALSE setting of the trainflag and shwtflag respectively. If trainflag is TRUE and the ensuing showtime margin calculated during training is below the target margin, the modem will initiate a retrain. Similarly, if shwtflag is TRUE and the SHOWTIME margin drops below the set margin_threshold, the modem will initiate a retrain. For default, both the trainflag and shwtflag are FALSE.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Initialize UR8 to enable Margin Monitor */

dslhal_api_setMarginMonitorFlags(ppIHw,1,1);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.16 dslhal_api_setMarginThreshold

unsigned int dslhal_api_setMarginThreshold(PITIDSLHW_T ppIHw, int threshold)

 Input:
 PITIDSLHW_T

ppIHw

int

threshold
// this is the 2* margin threshold (in dB) to be set

 Returns:
0 if Successful

1 if Not Successful.

This function sets the SHOWTIME margin threshold value for the modem. When showtime margin monitor flag is set, if the margin during SHOWTIME drops below threshold, the modem will initiate a retrain. Valid range for threshold parameter is –64 to 63 (in steps of 0.5dB). If this function is called after the modem is trained up, then a modem retrain would be required in order to reflect the changes.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Set Showtime Margin Threshold for UR8 */

dslhal_api_setMarginThreshold(ppIHw,6);

/* Initialize UR8 to enable Margin Monitor */

dslhal_api_setMarginMonitorFlags(ppIHw,1,1);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.17 dslhal_api_disableLosAlarm

unsigned int dslhal_api_disableLosAlarm(PITIDSLHW_T ppIHw, unsigned int set)

 Input:
 PITIDSLHW_T

ppIHw

unsigned int

set

 Returns:
0 if Successful

1 if Not Successful.

This function disables a modem retrain from showtime state due to an LOS condition on the line. This would enable US PSD measurements to be taken even after the connection has been disabled since the showtime state is not dropped. The margin monitor feature during showtime should is expected to be disabled at the same time for the above feature to be effective. If this function is called after the modem is trained up, then a modem retrain would be required in order to reflect the changes.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Initialize UR8 to disable Margin Monitor during showtime */

dslhal_api_setMarginMonitorFlags(ppIHw,1,0);

/* Initialize UR8 to disable LOS Alarms */

dslhal_api_disableLosAlarm(ppIHw,1);

/* Initialize UR8 to enable LOS Alarms */

dslhal_api_disableLosAlarm(ppIHw,0);

/* Initialize UR8 to enable Margin Monitor during showtime */

dslhal_api_setMarginMonitorFlags(ppIHw,1,1);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.18 dslhal_api_setEocVendorId

unsigned int dslhal_api_setEocVendorId(PITIDSLHW_T ppIHw, char *VendorID)

 Input:
 PITIDSLHW_T

ppIHw

 Char

VendorID
 / Desired Vendor ID to be set */

 Returns:
0 if Successful

1 if Not Successful.

This function allows a desired Vendor ID to be set. This is a 8-byte field, which is written by the host to the DSP during initialization but can be modified at any time. If this function is called after the modem is trained up, then a modem retrain would be required in order to reflect the changes. The vendor ID information can be requested by the ATU-C via an EOC command for G.DMT/T1413 modes and via inventory command for ADSL2\2+ mode. For the T1.413 mode, TI default value (0004) is used, for the G.DMT mode, the vendor id is set using this function.

Usage:

PITIDSLHW_T
ppIHw;

dslhal_api_dslStartup(&ppIHw); /* Initialize UR8 Modem */

/* Initialize desired Vendor ID */

dslhal_api_setEocVendorId(ppIHw,VendorID);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

dslhal_api_dslShutdown(ppIHw); /* Terminate the Connection */

1.10.19 dslhal_api_setEocSerialNumber

unsigned int dslhal_api_setEocSerialNumber(PITIDSLHW_T ppIHw, char *SerialNumber)

 Input:
 PITIDSLHW_T

ppIHw

 char

SerialNumber
 / Desired Serial number to be set */

 Returns:
0 if Successful

1 if Not Successful.

This function allows a desired EOC Serial number to be set. This is a 32-byte field, which is written by the host to the DSP during initialization but can be modified at any time. If this function is called after the modem is trained up, then a modem retrain would be required in order to reflect the changes. The serial number can be requested by the ATU-C via an EOC command for G.DMT/T1413 modes and via inventory command for ADSL2\2+ mode.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Initialize desired EOC Serial Number */

dslhal_api_setEocSerialNumber(ppIHw,SerialNumber);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.20 dslhal_api_setEocRevisionNumber

unsigned int dslhal_api_setEocRevisionNumberID(PITIDSLHW_T ppIHw, char *RevNum)

 Input:
 PITIDSLHW_T

ppIHw

 Char

RevNum
 / Desired Revision number to be set */

 Returns:
0 if Successful

1 if Not Successful.

This function allows a desired EOC revision number to be set for G.DMT/T1.413 modes and a desired version number for ADSL2\2+ modes. This is a 4-byte field for G.DMT/T1413 modes and a 16 bytes field for ADSL2\2+ modes, which is written by the host to the DSP during initialization, but can be changed at any time. If this function is called after the modem is trained up, then a modem retrain would be required in order to reflect the changes. The revision information can be requested by the ATU-C via an EOC command in G.DMT/T1.413 modes and the version number can be requested by the ATU-C via inventory command for ADSL2\2+ modes.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Initialize desired EOC Revision Number */

dslhal_api_setEocRevisionNumber(ppIHw,RevNum);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

dslhal_api_dslShutdown(ppIHw); /* Terminate the Connection */

1.10.21 dslhal_api_setTrellisFlag

unsigned int dslhal_api_setTrellisFlag(PITIDSLHW_T ppIHw, unsigned int flag)

Input:
 PITIDSLHW_T

ppIHw

 unsigned int

flag

Returns:
0 if Successful

1 if Not Successful.

This API sets the Trellis coding enable flag (described in table 5), if the input parameter, flag is 1 and resets the Trellis coding enable flag if this parameter is zero. If this function is called after the modem is trained up, then a modem retrain would be required in order to reflect the changes.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Set the Trellis flag*/

dslhal_api_setTrellisFlag(ppIHw,1);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.22 dslhal_api_setRateAdaptFlag

unsigned int dslhal_api_setRateAdaptFlag(PITIDSLHW_T ppIHw, unsigned int flag)

Input:
 PITIDSLHW_T

ppIHw

 unsigned int

flag

Returns:
0 if Successful

1 if Not Successful.

This API sets the Rate Adapt enable flag (described in table 5), if the input parameter, flag is 1 and resets the Rate Adapt enable flag if this parameter is zero which would mean that it will be set to a fixed rate. If this function is called after the modem is trained up, then a modem retrain would be required in order to reflect the changes.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Set the Rate Adapt flag*/

dslhal_api_setRateAdaptFlag(ppIHw,1);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.23 dslhal_api_setMaxBitsPerCarrierUpstream

unsigned int dslhal_api_setMaxBitsPerCarrierUpstream (PITIDSLHW_T ppIHw, unsigned int maxbits)

Input:
 PITIDSLHW_T

ppIHw

 unsigned int

maxbits

Returns:
0 if Successful

1 if Not Successful.

This API configures the maximum number of bits per carrier as specified in table 5. The range of the input parameter should be between 2 and 15, the default value is 15. If this function is called after the modem is trained up, then a modem retrain would be required in order to reflect the changes.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Set the upstream maximum bits per carrier to 8*/

dslhal_api_setMaxBitsPerCarrieUpstream(ppIHw,8);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.24 dslhal_api_setMaxInterleaverDepth

unsigned int dslhal_api_setMaxInterleaverDepth(PITIDSLHW_T ppIHw, unsigned int maxdepth)

Input:
 PITIDSLHW_T

ppIHw

 unsigned int

maxdepth

Returns:
0 if Successful

1 if Not Successful.

This API configures the maximum interleave depth supported by the ATU-R. Although the final interleave depth has to be negotiated with the CO, this configuration would inform the CO that the ATU-R is capable of supporting a given maximum depth. The input parameter, maxdepth ranges from 0 to 3, which corresponds to a maximum depth of 64 to 512 in step of 2x. This is again in accordance to the description in table 5. If this function is called after the modem is trained up, then a modem retrain would be required in order to reflect the changes.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Set the max interleave depth to 128*/

dslhal_api_setTrellisFlag(ppIHw,1);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.25 dslhal_api_configureLed

unsigned int dslhal_api_configureLed (PITIDSLHW_T ppIHw, unsigned int
imes, unsigned int parmVal)

Input:
 PITIDSLHW_T

ppIHw

 unsigned int

idled

 unsigned int

parmVal

Returns:
0 if Successful

1 if Not Successful

This function controls the LED, which are tied to the DSLSS GPIOs. This function can override the DSP defaults for LED operation & can turn on/off a specific LED. The LED that needs to be controlled is specified by the first parameter,
imes. The parametric operation of this API, can be summarized by the following table:

	LED : idLed
	Parameter: parmVal
	Operation

	0
	Don’t Care
	Restore DSP default operation

	1

(ID_DSL_LINK_LED)
	0

1

2
	Turn On Link LED, bypass DSP default operation

Turn Off Link LED, bypass DSP default operation

Just bypass DSP default operation for Link LED

	2

(ID_DSL_ACT_LED)
	0

1

2
	Turn On Activity LED, bypass DSP default operation

Turn Off Activity LED, bypass DSP default operation

Just bypass DSP default operation for Activity LED

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

/*example: Bypass DSP operation on Activity LED */

dslhal_api_configureLed(ppIHw,2,2);

/*example: Bypass DSP operation on Link LED and turn it on */

dslhal_api_configureLed(ppIHw,1,0);

dslhal_api_dslShutdown(ppIHw);

1.10.26 dslhal_api_configureDgaspLpr

unsigned int dslhal_api_configureDgaspLpr (PITIDSLHW_T ppIHw, unsigned int cfg, unsigned int parm)

Input:
 PITIDSLHW_T

ppIHw

 unsigned int

cfg

 unsigned int

parm

Returns:
0 if Successful

1 if Not Successful

This function controls the GPIO0, which is tied to the DSLSS GPIOs for controlling the Dying Gasp LPR signal. This function can override the DSP defaults for dying Gasp signal & can change the interpretation of this signal (active high/low). In case the DSP default is overridden, the host processor chooses to do its own dying Gasp LPR monitoring &detection. Once this signal is detected, the host needs to manually send the HOST_DGASP message to intimate this condition to the DSP. The parametric operation of this API is as follows:

	Config : cfg
	Parameter: parm
	Operation

	0
	0

1
	Set the Dying Gasp LPR signal to Active Low

Set the Dying Gasp LPR signal to Active High

	1
	0

1
	Keep DSP default; DSP detects dying Gasp & sends DSP_DGASP

Override DSP default; Host detects dying Gasp & sends HOST_DGASP

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

/*example: Bypass DSP operation on Dying Gasp Lpr */

dslhal_api_configureLed(ppIHw,1,1);

/*example: Set Dying Gasp Lpr to Active High*/

dslhal_api_configureLed(ppIHw,0,1);

dslhal_api_dslShutdown(ppIHw);

1.10.27 dslhal_api_sendDgasp

unsigned int dslhal_api_sendDgasp (PITIDSLHW_T ppIHw)

Input:
 PITIDSLHW_T

ppIHw

Returns:
0 if Successful

1 if Not Successful.

This API sends the HOST_DGASP message to the DSP to indicate that it has detected the Dying Gasp. This should be sent when the host has taken charge of detecting the Dying Gasp LPR signal to inform the DSP. An acknowledgement from the DSP would be in the form of a DSP_DGASP message.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Send Dying Gasp*/

dslhal_api_sendDgasp (ppIHw);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.28 dslhal_api_resetTrainFailureLog

unsigned int dslhal_api_resetTrainFailureLog (PITIDSLHW_T ppIHw)

Input:
 PITIDSLHW_T

ppIHw

 Returns:
0 if Successful

1 if Not Successful.

This API resets the training metrics in the TIOIDINFO structure, viz., trainFails, which is a counter to the number of failed attempts prior to successful training and also trainFailStates, which is an array of failing substates, corresponding to each of the failed training attempts prior to achieving successful SHOWTIME. These metrics are automatically reset if a retrain is initiated after the modem has trained up successfully. This API is used to preemptively clear the training failure log in the event of an abnormal training condition or an ATU-C error. This API can be invoked at any time during the training sequence.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Reset Training Failures*/

dslhal_api_resetTrainFailureLog (ppIHw);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.29 dslhal_api_selectInnerOuterPair

unsigned int dslhal_api_selectInnerOuterPair (PITIDSLHW_T ppIHw, unsigned int pairSelect)

Input:
 PITIDSLHW_T

ppIHw

unsigned int

pairSelect

Returns:
0 if Successful

1 if Not Successful.

This API sends the HOST_RJ11SELECT message to the DSP to select between the RJ11 Inner/Outer Pair. The parameter pairSelect, if set to 0 would result in inner pair selection. If it is set to 1, the outer pair is selected. It is required to send the modem to IDLE state using the function described in section 3.2.4, prior to using this API and in order for the settings to take effect, a modem retrain using the function described in section 3.2.5.

Usage:

PITIDSLHW_T
ppIHw;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Select Outer Pair*/

dslhal_api_selectInnerOuterPair (ppIHw,1);

/* Terminate the Connection */\

dslhal_api_dslShutdown(ppIHw);

1.10.30 dslhal_api_setPhyFeatureController

unsigned int dslhal_api_setPhyFeatureController(PITIDSLHW_T ppIHw, unsigned int paramId, unsigned int phyCtrlWord)

Input:
 PITIDSLHW_T

ppIHw

 paramId

Identifies the control Structure to write to

phyCtrlWord

The 32 bit integer to be written to the control structure

 Returns:
0 if Successful

 Error Code if Not Successful.

This API configures the control structure in the DSP-MIPS interface referenced by the DEV_HOST_phyControlStructure_t structure. The specific feature list being written to, is identified by the paramId argument to this function. This function works in conjunction with the following two APIs, which form the family of APIs that configure or read PHY feature settings. The table of features in the control words is shown on Section 3.6.6. Setting a bit in the phyCtrlWord to 1 implies that the MIPS will control the feature corresponding to that bit, e.g. 1-bit constellations. By default, the DSP controls all the features.

Usage: See Section 3.2.29

1.10.31 dslhal_api_enableDisablePhyFeatures

unsigned int dslhal_api_enableDisablePhyFeatures(PITIDSLHW_T ppIHw, unsigned int paramId, unsigned int phyFeatureSet)

Input:
 PITIDSLHW_T

ppIHw

 paramId

Identifies the control Structure to write to

phyFeatureSet

The 32 bit integer to be written to the control structure

 Returns:
0 if Successful

 Error Code if Not Successful.

This API configures the control structure in the DSP-MIPS interface referenced by the DEV_HOST_phyControlStructure_t structure. The specific feature list being written to, is identified by the paramId argument to this function. This function works in conjunction with the APIs above and below, which form the family of APIs that configure or read PHY feature settings. The table of features in the control words is shown on Section 3.6.6. Setting a bit in the phyFeatureSet to 1 will ENABLE the PHY feature corresponding to this bit, IF the MIPS can control this feature as configured by the API above: dslhal_api_setFeatureController. To disable a certain feature, the corresponding bit in the phyFeatureSet should be set to 0 and the Feature Controller for this feature should have been configured to be the MIPS processor. By default, the DSP controls all the features.

Usage: See Section 3.2.29

1.10.32 dslhal_api_readPhyFeatureSettings

unsigned int dslhal_api_readPhyFeatureSettings(PITIDSLHW_T ppIHw, unsigned int paramId, void *phyFeature)

Input:
 PITIDSLHW_T

ppIHw

 paramId

Identifies the control Structure to write to

phyFeature

Pointer to phySettings structure to store control information

 Returns:
0 if Successful

 Error Code if Not Successful.

This API reads from the control structure in the DSP-MIPS interface referenced by the DEV_HOST_phyControlStructure_t structure. The specific feature list being read from, is identified by the paramId argument to this function. This function works in conjunction with the two APIs above, which form the family of APIs that configure or read PHY feature settings. The table of features in the control words is shown on Section 3.6.6. This API will read the feature control word and the feature settings from the control structure. The former would reveal whether it is the MIPS or the DSP that controls features specific to the bits in the word and the latter would state whether the features corresponding to the bits as shown in section 3.6.6, are enabled or disabled. The phySettings structure has been shown in section 3.7.

Usage for Sections 3.2.27-29

PITIDSLHW_T
ppIHw;

phySettings Feature;

phySettings *pFeature= &Feature;

/* Assume that features corresponding to bit 0 & 1 are to be controlled by the MIPS */

unsigned int ctrlWord = 0x3;

/* Assume that feature corresponding to bit 0 is to be enabled and bit 1 to be disabled *

unsigned int enableDisable = 0x1;

/* Initialize UR8 Modem */

dslhal_api_dslStartup(&ppIHw);

/* SetPhyController: Assume that the control structure is the first one */

dslhal_api_setPhyFeatureController (ppIHw, INTEROP_FEATURELIST0_PARAMID, ctrlWord);

/* Enable/Disable PHY Features: Assume that the control structure is the first one */

dslhal_api_enableDisablePhyFeature(ppIHw, INTEROP_FEATURELIST0_PARAMID, enableDisable);

/* Read Feature Settings: Assume that the control structure is the first one */

dslhal_api_readPhyFeatureSettings (ppIHw, INTEROP_FEATURELIST0_PARAMID,pFeature);

printf(“The enable Disable Word is:%x\n”,pFeature->phyEnableDisableWord);

printf(“The Controller Word is:%x\n”,pFeature->phyControlWord);

/* Decode status and Start Modem Training */

while(ppIHw->lConnected!=1)

dslhal_api_pollTrainingStatus(ppIHw);

printf(“UR8 Modem is ShowTime\n”);

/* Terminate the Connection */

dslhal_api_dslShutdown(ppIHw);

1.10.33 dslhal_api_getHLOGpsds
unsigned int dslhal_api_getHLOGpsds(PITIDSLHW_T ppIHw, unsigned short *outbuf, int flag)

Input:
PITIDSLHW_T

ppIHw

Unsigned short *
Outbuf

Int

flag; // 0=training HLOGpsds, 1=showtimeHLOGpsds

 (Currently only training HLOGpsds is supported)

Returns:
0 if Successful

Error Code if Not Successful.

This API return training HLOG downstream per sub-carrier. The return is an array of 16 bit number, each array entry represents the Training real Hlog(f=i*delta(f)) value for a particular sub-carrier index i, ranging from 0 to NSCds-1, as defined in g.997.1.

Currently, this API only support ADSL2\2+ mode, and only flag=0 (ie. training HLOGpsds) is supported.

For ADSL2 mode, a buffer of 256*2=512 bytes needs to be provided, for ADSl2+ mode, a buffer of 512*2=1024 bytes need to be provided.
1.10.34 dslhal_api_getQLNpsds
unsigned int dslhal_api_getQLNpsds(tidsl_t * ptidsl, unsigned char *outbuf, int flag);

Input:
PITIDSLHW_T

ppIHw

Unsigned char *

Outbuf

Int

flag; // 0=training QLNpsds, 1=showtimeQLNpsds

 (Currently only training QLNpsds is supported)

Returns:
0 if Successful

Error Code if Not Successful.

This API return training Quiet Line Noise (QLN) downstream per sub-carrier. The return is an array of 8 bit number, each array entry represents the Training QLN(f=i*delta(f)) value for a particular sub-carrier index i, ranging from 0 to NSCds-1, as defined in g.997.1.

Currently, this API only support ADSL2\2+ mode, and only flag=0 (ie. training QLNpsds) is supported.

For ADSL2 mode, a buffer of 256 bytes needs to be provided, for ADSl2+ mode, a buffer of 512 bytes need to be provided.
1.10.35 dslhal_api_getSNRpsds
unsigned int dslhal_api_getSNRpsds (tidsl_t * ptidsl, unsigned char *outbuf, int flag);

Input:
PITIDSLHW_T

ppIHw

Unsigned char *

Outbuf

Int

flag; // 0=trainingSNRpsds, 1=showtime SNRpsds
 (Currently only showtime SNRpsds is supported)

Returns:
0 if Successful

Error Code if Not Successful.

This API returns showtime SNR downstream per sub-carrier. The return is an array of 8 bit number in dB, each array entry represents the showtime SNR(f=i*delta(f)) value for a particular sub-carrier index i, ranging from 0 to NSCds-1, as defined in g.997.1.

Currently, this API only support ADSL2\2+ mode, and only flag=1 (ie. Showtime SNRpsds) is supported.
DSL HAL Generic APIs

1.10.36 Introduction

This section describes the proposal for the DSL HAL Generic APIs. These can be used for any implementation of the structures in the DSP-Host interface, so long as the interface is a structure of pointers. The implementation of these APIs is based on the premise that any generic operation involves a read from a DSP memory location to a local buffer or a write to the DSP memory location. The following two APIs perform the described functions. These APIs write to the structures in the host interface, indexed by the offset of the structure to write to and another level of offset from there. It is required to have an array of pointers at the top level host interface and another array of pointers at the level beneath the host interface. For any other implementation of the interface and its underlying structures, these APIs may not function.

1.10.37 dslhal_api_dspInterfaceRead

unsigned int dslhal_api_dspInterfaceRead(PITIDSLHW_T ppIHw, unsigned int baseAddr,

 unsigned int numOffsets, unsigned int *offsets,

 unsigned char *buffer, unsigned int numbytes)

Input:

PITIDSLHW_T

ppIHw

unsigned int

baseAddr,

unsigned int

numOffsets,

unsigned int

*offsets,

unsigned char

*buffer,

unsigned int

numbytes

Returns:

DSLHAL_ERROR_NO_ERRORS; if successful

DSLHAL_ERROR_CONFIG_API_FAILURE; if not successful
This is a flexible API function to read any part of the DSP-MIPS Interface. This function is similar to the dshal_api_genericDspRead function described in section 3.5.2, however, it does not assume any particular depth of the structure in the interface to be read from. In other words, as long as the base address of the DSP-MIPS interface is provided with a specified depth and the pointer offsets, this function can read the specified number of bytes from the DSP-MIPS software interface.

The first parameter is a pointer to the application interface. The second parameter specifies the base address of the structure to be read from, e.g. if the DSP-MIPS interface is to be read from, the starting address of this interface is to be provided as this parameter. The next two input parameters are used to provide offset information. The numOffsets parameter is used to specify the number of pointer offsets which will be provided to the function. This should also take into account the element offset for the structure to be read. The offsets parameter is a pointer to an integer array which consists of integer offsets of the pointers/elements. It should be noted that the number of elements in this array should never exceed the numOffsets provided to the function. Ideally, the size of the offsets array should be equal to numOffsets. The last element of the offsets array is considered to be an element offset within the last structure that is read.

The parameter, buffer, is used to specify the location of the buffer/variable that is used to store the contents read from the memory location triangulated by the offsets. The final parameter, numbytes, as the name indicates, specifies the number of bytes to read from the determined address onto the specified buffer.

1.10.38 dslhal_api_dspInterfaceWrite

unsigned int dslhal_api_dspInterfaceWrite(PITIDSLHW_T pp iHw, unsigned int baseAddr

 unsigned int numOffsets, unsigned int *offset,

 unsigned char *buffer, unsigned int numbytes)

Input:

PITIDSLHW_T

ppIHw

unsigned int

baseAddr,

unsigned int

numOffsets,

unsigned int

*offsets,

unsigned char

*buffer,

unsigned int

numbytes

Returns:

DSLHAL_ERROR_NO_ERRORS; if successful

DSLHAL_ERROR_CONFIG_API_FAILURE; if not successful
This is a flexible API function to write to any part of the DSP-MIPS Interface. This function is similar to the dshal_api_genericDspWrite function described in section 3.5.3, however, it does not assume any particular depth of the structure in the interface to be read from. In other words, as long as the base address of the DSP-MIPS interface is provided with a specified depth and the pointer offsets, this function can read the specified number of bytes from the DSP-MIPS software interface.

The first parameter is a pointer to the application interface. The second parameter specifies the base address of the structure to be read from, e.g. if the DSP-MIPS interface is to be read from, the starting address of this interface is to be provided as this parameter. The next two input parameters are used to provide offset information. The numOffsets parameter is used to specify the number of pointer offsets which will be provided to the function. This should also take into account the element offset for the structure to be written. The offsets parameter is a pointer to an integer array which consists of integer offsets of the pointers/elements. It should be noted that the number of elements in this array should never exceed the numOffsets provided to the function. Ideally, the size of the offsets array should be equal to numOffsets. The last element of the offsets array is considered to be an element offset within the last structure that is read.

The parameter, buffer, is used to specify the location of the buffer/variable that is used to store the contents to be written to the memory location triangulated by the offsets. The final parameter, numbytes, as the name indicates, specifies the number of bytes to write to the determined address from the specified buffer.

1.11 Host Interface Data Structures

The data pump uses a shared memory region to pass information between the host communications processor and the DSP. The internal structure of this shared memory space can be found in the source files provided with this manual. A pointer to this data structure is stored in the first location of the data memory of the DSP (internal memory address 0x80000000).

1.11.1 Basic Modem Status

The data pump DSP indicates the current connection state in the variable bState, it can take one of the following values:

	ENUMERATION
	Description

	RSTATE_HS
	Initial modem training state. Modem requests activation signal from the CO. Modem will monitor for this signal.

	RSTATE_IDLE
	Modem is idle. It’s doing nothing.

	RSTATE_INIT
	Modem is actively training.

	RSTATE_SHOWTIME
	Modem has achieved steady-state operation along with an active DSL data link.

Table 2 – DSP-to-Host Modem State Transitions

1.11.2 Modem Control

The data pump responds to commands from the host communications processor that are placed into a circular buffer and similarly the host receives the responses from the data pump that have been placed into a separate circular buffer.

Table 1 lists the commands from the host to the data pump. Table 2 lists the responses from the data pump to the host. Each 4-byte command or response consists of command, tag, parameter1 and parameter2. In most cases the tag value carries any additional information needed by the command while

	ENUMERATION
	DESCRIPTION

	HOST_ACTREQ
	Start the modem’s training sequence. Modem requests activation signal from the CO. Modem monitors for this signal.

	HOST_QUIET
	Stop whatever the modem is doing. Modem transmits the quiet tone ~60 seconds, then goes to idle.

	HOST_IDLE
	Stop whatever the modem is doing. Go idle.

	HOST_DGASP
	Instruct the DSP to transmit the dying-gasp message via the EOC.

	HOST_DSLSS_SHUTDOWN
	Inform the DSP that the host is about to reset the DSL subsystem

Table 1: Host to DSP Commands

	ENUMERATION
	Description

	DSP_IDLE
	Modem is idle.

	DSP_ACTIVE
	Modem is active; i.e., training sequence complete and steady-state operation achieved.

	DSP_CRATES1
	CRATES1 message is valid. The host processor can copy it now.

	DSP_SNR
	SNR value has been calculated and can be copied over to the host processor memory.

	DSP_TC_SYNC & DSP_TC_NOSYNC
	TC SYNC & NOSYNC messages as read from the ATM-TC

	DSP_HYBRID
	Informs the host processor that the hybrid metrics are available

Table 2: DSP Responses to Host

1.11.3 Modem Configuration

The following parameters can be set using values stored in the shared memory region of the on-chip DSP data memory:-

	Parameter
	Description
	Valid values

	vendorID
	Modem vendor ID value
	For T1.413 training mode, default value for TI = 0004. For G.DMT mode, vendor ID can be set using API

	Rate_adapt
	Rate adapt enable flag
	Fixed rate = 0, adaptive = 1 (default)

	trellis
	Trellis coding enable flag
	Disabled = 0, enabled = 1 (default)

	Echo_canceling
	Echo canceling or FDD operation flag
	FDD = 0 (default) , EC = 1 (invalid)

	max_bits
	Maximum bits per carrier value
	Value 2 to 15, default = 15

	maxIntlvDepth
	Maximum interleave depth supported
	Value 0 to 3, default = 3

64 bits = 0, 128 bits = 1

256 bits = 2, 512 bits = 3

	maxframemode
	Maximum framing supported
	Value 0 to 3, default = 3

Asynchronous framing = 0

Synchronous full overhead framing = 1

Reduced overhead = 2

Merged reduced overhead = 3

	StdMode
	Desired modem trained mode

(Note: The training mode should be supported by the firmware being used)
	Multi-mode = 1 (POTS default)
T1.413 mode = 2

G.DMT mode = 3 (ISDN default)

G.LITE mode = 4

ADSL2 MODE = 8

ADSL2 DELT MODE = 9

ADSL2 PLUS MODE = 16

ADSL2 PLUS DELT MODE = 17

Table 3: Modem Configuration Registers

The modem configuration is read back using the configFlag variable in the host-application interface structure. The bits of this bitfield indicate the current configuration of the Modem. Currently there are only two of these bits being used. Bit 0 is set if the Trellis mode is turned on & Bit 1 is used to indicate if the echo canceller is turned on.

1.11.4 Modem Performance Counters

The DSL modem performance counters can be read at any time by the host. The data pump DSP updates them after each frame (every 250 (s). There are individual groups of counters for interleaved path upstream traffic, fast path upstream traffic, interleaved path downstream traffic and fast path downstream traffic.

	Parameter
	Description

	LOS_errors
	Number of DSL frame periods without frame synchronization

	SEF_errors
	Number of severely errored frames (increments when LOS_errors > MaxBadSync)

	USConRate
	Upstream connection rate (in Kbps)

	DSConRate
	Downstream connection rate (in Kbps)

	usSuperFrmCnt
	Upstream superframe counter

	dsLineAttn
	Estimated downstream line attenuation (in 2 *dB)

	dsMargin
	Current signal-to-noise ratio margin (in 2 *dB)

	dsTxPower
	Downstream Transmit Power (in 256 *dB)

	usLineAttn
	Estimated upstream line attenuation (in 2* dB)

	usMargin
	Current signal-to-noise ratio margin (in dB)

	usTxPower
	Upstream Transmit Power (in 256 *dB)

	USPeakCellRate
	Upstream peak useful cell rate

	BitAllocTblDstrm
	Downstream Bit Allocation table

	BitAllocTblUstrm
	Upstream Bit Allocation table

	marginTblDstrm
	DS Margin per bin

	snrPerBin
	DS SNR per bin

	dsNoise
	DS Noise Floor per bin (256 * dB)

Table 4: Fundamental Modem Performance Information

	Parameter
	Description

	CRC_errors
	Number of DSL frames with a CRC error

	FEC_errors
	Number of DSL frames where the FEC (forward error correction) corrected an error

	NCD_errors
	Number of times an NCD (no cell delineation) event occurred

	LCD_errors
	Number of times an LCD (loss of cell delineation) event occurred

	HEC_errors
	Number of DSL frames containing at least one HEC error

Table 5: DSL Modem Performance Counters

The ATM layer performance counters can be read at any time.

	Traffic Direction
	Parameter
	Description

	Upstream
	Atm_count
	Count of non-idle ATM cells

	Upstream
	Idle_count
	Count of idle ATM cells

	Upstream
	Pdu_count
	Count of AAL5 cells containing an end of packet indicator

	Downstream
	Good_count
	Count of non-idle ATM cells

	Downstream
	Idle_count
	Count of idle ATM cells

	Downstream
	BadHec_count
	Count of ATM cells with bad HEC

	Downstream
	OVFdrop_count
	Count of ATM cells dropped due to buffer overflow

	Downstream
	Pdu_count
	Count of AAL5 cells containing an end of packet indicator

Table 6: ATM Layer Performance Counters

OS__________
The OS Shim APIs are a way of mapping functions that are used by the DSL Driver API to OS specific function calls. This makes the DSL Driver API independent of any OS specific functionality. All applications and drivers developed using these libraries may need to modify the Intermediate API functions to map them on to OS specific functions. These functions are defined in the shim.c source file and described further in this section. The majority of these functions relate to the run time support functions of the OS.

The shim.c source file uses header files for function prototypes of all of the run time support library routines that are required. In most cases any modifications required will relate to the names of the run time library routines and the type of parameters passed to them. It is strongly recommended not to change the format or constants defined in the file. An example shim.c source file is provided that is configured for use with the ADAM2 run time environment on the AR7 development platform (EVM3).

1.12 shim_osAllocateMemory

VOID *shim_osAllocateMemory(unsigned int size)

Input:
unsigned int
size
Returns:
pointer to memory if successful

NULL if failed
The DSL Driver uses this function to allocate memory from the OS to store dynamic data structures. The single parameter passed to this routine specifies the number of bytes to allocate. In most cases the run time library for the OS has a suitable function called malloc (or kmalloc in the case of Linux for allocating memory from the kernel heap). It should return a NULL pointer if it is unable to allocate sufficient memory. It should return a pointer to the allocated space if it is successful. Note that this function should allocate memory starting at a 32-bit boundary (functions such as malloc normally perform this anyway).

1.13 shim_osMoveMemory

VOID shim_osMoveMemory(CHAR *dst, CHAR *src, unsigned int numBytes)

Input:
CHAR

*dst

CHAR

*src

unsigned int
numBytes
Returns:
VOID
The DSL Driver uses this function to copy a block of memory. The three parameters passed to this routine are a pointer to the source object, a pointer to the destination object and the number of bytes to copy. In most cases the run time library for the OS has a suitable function called memcopy. Note that this function does not take care of allocating memory for the destination object. There are no restrictions on the byte alignment of the source and destination pointers.

1.14 shim_osFreeMemory

VOID shim_osFreeMemory(VOID *ptr, unsigned int size)

Input:
VOID

*ptr

unsigned int
size

Returns:
VOID
The DSL Driver uses this function to return the allocated memory block to the heap. This function performs the opposite of the shim_osAllocateMemory function. The two parameters passed to this routine are the pointer to the memory block and the length in bytes of the block. The length parameter is specified because some run time library functions require it. In most cases the run time library for the OS has a suitable function called free (or kfree in the case of Linux to free heap back to the kernel memory space). This function should return the memory back to the correct memory pool (kernel or user heap).

1.15 shim_osStringCmp

unsigned int shim_osStringCmp(const CHAR* str1, const CHAR* str2)

Input:
const CHAR
*str1

const CHAR
*str2

Returns:
0 if string1 = string2

>0 if string1 > string2

<0 if string1 < string2

The DSL Driver uses this function to compare two strings character by character. The two parameters are pointers to the two strings. Both strings must be null terminated and can be of different lengths. It returns a signed integer value where the sign is determined by the difference between the values of the first pair of bytes that differ in the strings being compared. It returns a zero value if the two strings are identical.

1.16 shim_osZeroMemory

VOID shim_osZeroMemory(CHAR *dst, unsigned int numBytes)

Input:
CHAR

*dst

unsigned int
numBytes

Returns:
VOID
The DSL Driver uses this function to initialize a memory region to zero. The two parameters are a pointer to the memory region and the length of the region to initialize.

1.17 shim_osCriticalEnter

VOID shim_osCriticalEnter(void)

Input:
NONE

Returns:
VOID
The DSL Driver uses this function to indicate a critical section of the code that needs to be guarded to prevent any anomalies in operation. This would ensure that prior to any interrupts being serviced, the section of the code starting with this indicator would be completed.

1.18 shim_osCriticalExit

VOID shim_osCriticalExit(void)

Input:
NONE

Returns:
VOID
The DSL Driver uses this function to indicate a critical section of the code that needs to be guarded to prevent any anomalies in operation. This would ensure that prior to any interrupts being serviced, the section of the code end with this indicator would be completed.

1.19 shim_osWriteBackCache

VOID shim_osCriticalEnter(void)

Input:
NONE

Returns:
VOID
This function is used to write back the contents of the cache into memory and flushes the cache. This function needs to be called whenever the host processor allocates virtual memory and stores information to be picked up by the DSP or other sources. This function is currently being used upon memory allocation for overlays and profiles.

1.20 dprintf

VOID dprintf(unsigned int uDbgLevel, CHAR* szFmt, …)

Input:
unsigned int
uDbgLevel

CHAR

*szFmt

…

Returns:
VOID

The DSL Driver uses this function to print debug information to the debug console interface. In most cases this is a serial port accessible by the processor. The first parameter is a value which indicates the level of the debug message to be printed. In most cases the run time library for the OS has suitable functions that can be used in combination to achieve this functionality such as va_start, vsprintf and va_end functions.

1.21 shim_osClockWait

VOID shim_osClockWait(unsigned int val)

Input:
unsigned int
val

Returns:
VOID
The DSL Driver uses this function to delay the execution of the next step. The input parameter corresponds to the desired delay in number of CPU clock cycles. The accuracy of the time delay is very critical to the overall DSL Driver API functionality. If the delay is more or less than expected could result in conditions where the processor could miss an event and wait indefinitely. This function requires close coupling with the timer ticks of the underlying operating system.

1.22 shim_osGetCpuFrequency

unsigned int shim_osGetCpuFrequency(VOID)

Input:
VOID
Returns:
absolute frequency in Hz
The DSL Driver uses this function to get the absolute frequency of the CPU. This can be a constant for a specific hardware build or can be a calculated stored variable. The returned value (in Hz) will be used in places where either absolute time or speed are required.

UR8 DSL HAL Programmer’s Guide

Version 1.0

© 2006-07 Texas Instruments Incorporated

viii
38
Texas Instruments Confidential

