

October 2005

Document Version 0.6

�
�

ADSL CPE Software�
DMT ADSL Customer Premise Equipment for ADSL Operations�
�

�

Important Notice: The products and services of Texas Instruments and its
subsidiaries described herein are sold subject to our standard terms and conditions
of sale. Customers are advised to obtain the most current and complete
information about TI products and services before placing orders. TI assumes no
liability for applications assistance, customer’s applications or product designs,
software performance, or infringement of patents. The publication of information
regarding any other company’s products or services does not constitute our
approval, warranty or endorsement thereof.
Copyright © 2003-2005 Texas Instruments Incorporated.

Texas Instruments Incorporated
Dallas, Texas.

AR7 SOFTWARE PORTING GUIDE FOR
TNETD7300 TO TNETD7200

Version 0.6

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI
for that product or service voids all express and any implied warranties for the associated TI product or
service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

 Telephony www.ti.com/telephony

 Video & Imaging www.ti.com/video

 Wireless www.ti.com/wireless

Mailing Address:

Texas Instruments
Post Office Box 655303, Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

DOCUMENT STATUS

In general the symbol "X" has been used in the body of this document to denote numeric
parameters that were unavailable at the time of publication

REVISION HISTORY

Revision Description
0.1 April 25, 2005 Preliminary Version Created by BCIL

0.2 April 26, 2005 Added the Initial Version of the ATM-DSL driver changes.

0.3 April 27, 2005 Updated the Flow-chart description for the DSP Clock Selection.

0.4 April 28, 2005 Added the Clock Diagram, Introduction and Scope.

0.5 April 29, 2005 Updated based on comments.

0.6 October, 2005 Updated the clock selection of the DSP clock for 7100.

 PSP

Version 0.6

Strictly private and confidential protected by NDA 5 of 24

Table of contents

1 Introduction... 6

1.1 Scope... 6
1.2 References:.. 6

2 Changes in PSPBoot loader .. 7

2.1 CVR Register .. 7
2.2 Clock scheme .. 8
2.3 CPGMAC MAC address and PHY0 setup ... 13
2.4 Serial (UART) interface.. 14
2.5 DSL boot code removal .. 15

3 Changes in PSP Linux image.. 16

3.1 CVR Register .. 16
3.2 Clock Configuration.. 16

3.2.1 Clock Initialization.. 16
3.2.2 USB Clock Initialization... 18
3.2.3 Get clock frequency function changes. ... 19

3.3 CPMAC configuration changes. ... 20
3.4 ATM-DSL changes ... 21

3.4.1 Change in the Interrupt vector number for the DSL interrupt 21
3.4.2 Change in the way the DSP frequency is configured.. 21
3.4.3 Change in the way that End Of Interrupt (EOI) is signaled.................................. 24

 PSP

Version 0.6

Strictly private and confidential protected by NDA 6 of 24

1 Introduction
This document describes the changes that are required for the Software between the AR7
Single Chip Router chips TNETD7300 to TNETD7200.

It assumes that the viewer has access to the Reference documents and that they have the
capability (tool-chains, boards, etc) for the relevant chips. It also assumes that the viewer has
an existing version of working software for the TNETD7300 platform.

This document goes into the details of the software changes, for the affected peripherals and
provides specific source code examples to accomplish the task of porting the existing
TNETD7300 software over to TNETD7200.

The examples provided are for the changes in the boot-loader, Platform Support Package,
CPMAC and the AM-DSL drivers.

1.1 Scope
The information presented here are a result of bring-up /testing the AR7 TNETD7200
EVM.

1.2 References:

x Texas Instruments Inc., TNETD7200 Device Specification version 1.0.

x Texas Instruments Inc., TNETD7300 Device Specification version 1.0.

 PSP

Version 0.6

Strictly private and confidential protected by NDA 7 of 24

2 Changes in PSPBoot loader

2.1 CVR Register

The CVR register has been updated in TNETD7200. It value is 0x2B.

The following macro can be used in order to determine that the system is running on
TNETD7200 chip:

#define IS_OHIO_CHIP() ((REG32_R(0xA8610914,15,0) == 0x2b) ? 1:0)

 PSP

Version 0.6

Strictly private and confidential protected by NDA 8 of 24

2.2 Clock scheme

The clock scheme has been changed in TNETD7200. The clock management memory area has
been increased to 512 bytes and resides in 0861:0A00-0861:0BFF. The block diagram for the
new Clock Configuration is shown below:

Fig: 1 TNETD7300 Clock Configuration

1

PLLBYPASS
(boot mode
control)

Peripheral Clock
(62.5/52.997MHz)

ADSL AFE
Clock

USB
Clock

DIV
/2

AFE_XTAL2
DCXO

AFE_XTAL1

REF_XTALO

REF_XTALI
XOSC

System Clock
(125/105.984MHz)

APLL
x1-x15

DIV
/1-/32

DIV
/1-/32

APLL
x1-x15

DIV
/1-/32

DIV
/1-/32

APLL
x1-x15

DIV
/1-/32

DIV
/1-/32

35.328 MHz

25 MHz

DIV
/2

Serial reference
VLYNQ Clock

Serial VLYNQ Clock
Select

(! MIPS Async Mode &
MIPS_2to1)

0

1

1

0

35.328 MHz

211.968 MHz

105.984 MHz

125 MHz

48.0769 MHz

25 MHz

211.968/125 MHz

MIPS Clock
1

0

! (MIPS Async Mode ||
MIPS_2to1) MIPS PLL Subsystem

SYSTEM PLL

USB PLL Subsystem

DIV
/4

AUX_CLKIN

PLLBYPASS
(boot mode
control)

0

1

0

1

0

1

Ethernet PHY
Clock

DIV
/1-/32

250 MHz

Filter clock

! PLLBYPASS
&

DSP250_mode

 PSP

Version 0.6

Strictly private and confidential protected by NDA 9 of 24

TNETD7200’s internal clocks are derived from 2 external crystals. These two crystals comprise
of 35.326 MHz crystal and the 25 MHz crystal. The 35.326 MHz crystal is connected to the
AFE_XTAL1 (AFE_XTALI) and AFE_XTAL2(AFE_XTALO) pins connected to the DCXO
module in the AFE subsystem. The 25MHz crystal is connected to ASIC Oscillator cell pair to
generate the desired clocks. Each crystal output in the core logic is connected to PLLs, and
programmable dividers to create the required internal clocks.

TNETD7200 clock scheme generates 8 different clock frequencies. 35.326 MHz and 25 MHz
frequency clocks come from crystal oscillators and 48 MHz, 212 MHz, 106 MHz, 53 MHz, 125
MHz and 62.5 MHz frequency clocks are generated by 3 PLLs and dividers in the clock
controller.
Different clocks generated by the clock controller are given below.

The MIPS clock drives the MIPS processor and its internal cache memory subsystem and is
derived from either the MIPS PLL sub-chip or the System PLL sub-chip. The desired source of
MIPS clock is chosen based on the value of MIPS_2to1 and MIPS_ASYNC boot values latched
by the DCL module. The maximum frequency for this clock in asynchronous mode or 2-to-1
mode is 211.968 MHz and 125MHz in 1-to-1 synchronous mode.

The System Clock drives the internal bus structures and EMIF. It is derived from the SYSTEM
PLL sub-chip or a divided (divide by 2) version of MIPS PLL sub-chip output. The selection
between the two outputs is based on the value of MIPS_2to1 and MIPS_ASYNC boot value
latched by the DCL module. The maximum frequency for this clock is 105.984 MHz in 2-to-1
mode and 125MHz in 1-to-1 synchronous and Async modes.

The mips_async and mips2to1 signals are used to select the MIPS and system clocks in the
following manner.

The following code determines the clock source, according to MIPS_ASYNC and MIPS_2TO1
bits in BOOTCR register:

 bit32u mips_async;

 mips_async = REG32_R(0xa8611a00, 25, 25);

 /* According to Ohio reference doc, page 35 * /

 if(mips_async)
 {
 /* Async mode */
 if (clk_id == CLK_ID_OHIO_SYS)

mips_async mips2to1 mips_func_clk System clock
(vbusp_clk)

mode

0 0 125 MHz 125 MHz sync 1:1

0 1 211.968 MHz 105.984 MHz sync 2:1

1 x 211.968 MHz 125 MHz async

 PSP

Version 0.6

Strictly private and confidential protected by NDA 10 of 24

 {
 freq = CONF_REFXTAL_FREQ;
 }
 else
 freq = CONF_AFEXTAL_FREQ;
 }
 else
 {
 /* Sync mode */
 bit32u mips_2to1;

 mips_2to1 = REG32_R(0xa8611a00, 15, 15);

 if(mips_2to1)
 {
 if (clk_id == CLK_ID_OHIO_SYS)
 {
 freq = CONF_REFXTAL_FREQ;
 }
 else
 freq = CONF_AFEXTAL_FREQ;
 }
 else
 {
 freq = CONF_REFXTAL_FREQ;
 }
 }

The following code initializes the system and MIPS clocks:

 bit32u mips_2to1;

 mips_2to1 = REG32_R(0xa8611a00, 15, 15);

 /* Check if sync or async */
 if (mips_async == 0)
 {
 /* Ohio sync mode */
 if (mips_2to1)
 {
 /* Sync 2:1
 In sync 2:1 mode, the MIPS PLL drives both the MIPS
 and System (MIPS/2) clocks.
 */
 cpuf = CPU_2TO1_MAX_F;
 sysf = CPU_2TO1_MAX_F / 2;

 cpuclk_in = get_base_frequency(CLK_ID_OHI O_CPU);
 get_val(cpuf, cpuclk_in, &cpumulti, &cpud iv);

 SioFlush();
 EMIF_DRAMCTL |= 0x80000000;

 /* Set the CpuFrequency PLL */
 setOhioClockPLL(cpumulti - 1, ((cpudiv - 1) & 0x1F), 0, CLK_ID_OHIO_CPU);

 _CpuFrequency = (cpuclk_in * cpumulti) / cpudiv;
 _SysFrequency = _CpuFrequency / 2;

 /* Initialize SYSTEM PLL for USB */
 sysf = SYS_MAX_F;

 sysclk_in = get_base_frequency(CLK_ID_OHI O_SYS);
 get_val(sysf, sysclk_in, &sysmulti, &sysd iv);

 /* Set the SysFrequency PLL and divider * /
 setOhioClockPLL(sysmulti - 1, ((sysdiv - 1) & 0x1F), 0, CLK_ID_OHIO_SYS);
 }
 else
 {
 /* Sync 1:1:
 In sync 1:1 mode, the SYSTEM PLL drive s both the MIPS and System clocks.

 PSP

Version 0.6

Strictly private and confidential protected by NDA 11 of 24

 */
 cpuf = sysf = CPU_SYNC_MAX_F;
 sysclk_in = get_base_frequency(CLK_ID_OHI O_SYS);
 get_val(sysf, sysclk_in, &sysmulti, &sysd iv);

 SioFlush();
 EMIF_DRAMCTL |= 0x80000000;

 /* Set the SysFrequency PLL and divider * /
 setOhioClockPLL(sysmulti - 1, ((sysdiv - 1) & 0x1F), 0, CLK_ID_OHIO_SYS);

 _SysFrequency = (sysclk_in * sysmulti) / (sysdiv);
 _CpuFrequency = _SysFrequency;
 }
 }
 else
 {
 /* Async mode
 In async mode (the mips_2to1 boot pin is ignored in async mode),
 both the MIPS and SYSTEM PLLs are used.
 */
 cpuf = CPU_2TO1_MAX_F;
 sysf = SYS_MAX_F;

 cpuclk_in = get_base_frequency(CLK_ID_OHIO_ CPU);
 get_val(cpuf, cpuclk_in, &cpumulti, &cpudiv);

 sysclk_in = get_base_frequency(CLK_ID_OHIO_ SYS);
 get_val(sysf, sysclk_in, &sysmulti, &sysdiv);

 SioFlush();
 EMIF_DRAMCTL |= 0x80000000;

 /* Set the SysFrequency PLL and divider */
 setOhioClockPLL(sysmulti - 1, ((sysdiv - 1) & 0x1F), 0, CLK_ID_OHIO_SYS);

 /* Set the CpuFrequency PLL */
 setOhioClockPLL(cpumulti - 1, ((cpudiv - 1) & 0x1F), 0, CLK_ID_OHIO_CPU);

 _SysFrequency = (sysclk_in * sysmulti) / (s ysdiv);
 _CpuFrequency = (cpuclk_in * cpumulti) / cp udiv;

 }

The following code sets up the TNETD7200 PLLS:

static void setOhioClockPLL(unsigned int mult, unsi gned int post_div, unsigned int pre_div,
unsigned int clock_id)
{
#define DIVEN 0x8000

 volatile unsigned int *postdiv; /* post-div reg ister */
 volatile unsigned int *pllcsr; /* PLL control-s tatus register */
 volatile unsigned int *pllm; /* PLL multiplie r register */
 volatile unsigned int *pllstat; /* PLL status r egister */
 volatile unsigned int *pllcmd; /* PLL command r egister */
 volatile unsigned int *pllcmden; /* PLL command enable register */
 volatile unsigned int *prediv; /* PLL command r egister */

 pllcsr = (volatile unsigned int *)(0xa8610a80 + clock_id * 0x80);
 pllm = (volatile unsigned int *)(0xa8610a90 + clock_id * 0x80);
 prediv = (volatile unsigned int *)(0xa8610a94 + clock_id * 0x80);
 postdiv = (volatile unsigned int *)(0xa8610a98 + clock_id * 0x80);
 pllcmd = (volatile unsigned int *)(0xa8610ab8 + clock_id * 0x80);
 pllcmden = (volatile unsigned int *)(0xa8610ac0 + clock_id * 0x80);
 pllstat = (volatile unsigned int *)(0xa8610abc + clock_id * 0x80);

 /* Disable the PLL */
 *pllcsr = 0;

 /* write 0 to pre-div ratio. We do not want to use it */

 PSP

Version 0.6

Strictly private and confidential protected by NDA 12 of 24

 *prediv = DIVEN | (pre_div & 0x1F);

 /* Set the frequency PLL */
 *pllm = mult & 0xF;

 /* Wait 1500 clock cycles. Note: This is more t han that */
 clkc_delay(1500);

 /* Ensure that the GOSTAT bit is ‘0’ to indicat e that the PLL
 * output clock alignment is not in progress.
 */
 while (*pllstat & 0x1);

 /* Set and enable the divider the (post) divide r */
 *postdiv = DIVEN | (post_div & 0x1F);

 /* set the GOSET bit in PLLCMDEN register */
 *pllcmden = 0x1;

 /* set the GOSET bit in PLLCMD register */
 *pllcmd = 0x1;

 /* Ensure that the GOSTAT bit is ‘0’ to indicat e that the PLL
 * output clock alignment is not in progress.
 */
 while (*pllstat & 0x1);

 /* Enable the PLL */
 *pllcsr |= 0x1;
}

See psp_boot/psbl/kernel/clkc.c file for more details.

 PSP

Version 0.6

Strictly private and confidential protected by NDA 13 of 24

2.3 CPGMAC MAC address and PHY0 setup

The TNETD7200 chip has only 1 Ethernet interface (CPGMAC0). The MAC address setup
process has been changed in TNETD7200. Since TNETD7300 has CPMAC and TNETD7200
has CPGMAC, the following code is used to initialize the CPGMAC MAC address correctly:

#define CPMAC_BASE 0x08610000

 /* Ohio CPGMAC MAC address setup */
 REG32_W(CPMAC_BASE + 0x508, 0);
 REG32_W(CPMAC_BASE + 0x504, sys_et_addr [0] | (sys_et_addr[1] << 8) |
 (sys_et_addr[2] << 16) | (sys_et_addr[3] << 24));
 REG32_W(CPMAC_BASE + 0x500, (1 << 20) | (1 << 19) | (0 << 16) |
 sys_et_addr[4] | (sys_e t_addr[5] << 8));

Where sys_et_addr variable contains the MAC address.

For AR7L0 based boards, there is a need to take Phy 0 out of reset, and in AR7WRD/VWi based
boards (with an external phy), Phy 0 must be kept in reset and MII pins must be initialized.
The following code demonstrates:

#define AVALANCHE_MII_SEL_REG (0xa8611A08)
#define RESET_BASE (0xa8611600)

 #if defined (AR7VWi) || defined (AR7WRD) /* Ohio boards */
 /* Ohio has only one EPHY - Reset EPHY0*/
 REG32_RMW(RESET_BASE, 26, 26, 0);
 delay_usecs(200);

 /* MII pins are connected to the MII interface o n the EMAC0 module.*/
 REG32_RMW(AVALANCHE_MII_SEL_REG,0,0,1);
 #else /* Sangam boards */

 /* Phy 0 out of reset */
 REG32_RMW(RESET_BASE, 26, 26, 1);
 delay_usecs(200);

 #endif /* defined (AR7VWi) || defined (AR7WRD) */

See psp_boot/psbl/kernel/main.c and psp_boot/psbl/net/cpmac.c files for more details.

 PSP

Version 0.6

Strictly private and confidential protected by NDA 14 of 24

2.4 Serial (UART) interface

TNETD7200 has only 1 UART port instead of 2 in TNETD7300.
Moreover, in order to use UART0, there is a need to take the GPIO module out of reset due to
the fact that they share pins.

The following macro makes sure that UART0 is properly started:

#define SIO1_BASE 0xa8610f00
#define SIO1_RSTMASK 0x02
#define SIO0_BASE 0xa8610e00
#define SIO0_RSTMASK 0x01

#define SIO_RSTMASK(base) ((base == SIO0_BASE)? I S_OHIO_CHIP() ? SIO0_RSTMASK | 0x40 :
SIO0_RSTMASK : SIO1_RSTMASK)

There is no need to initialize UART1 if TNETD7200 is detected.

 PSP

Version 0.6

Strictly private and confidential protected by NDA 15 of 24

2.5 DSL boot code removal

In the PSPBoot platform_init.s file, there is a jump to a memory location that initializes a DSL
patch that works only on TNETD7300. The following code has been introduced in order to skip
it, in case of TNETD7200:

/* Software workaround for Sangam DSL sub-sys, skip this code in Ohio - 7100 CVR=0x18 / 7200
CVR=0x2b */
 li t0, 0xa8610914
 lw t1, 0(t0)
 lw t0, 0(t0)
 andi t0, t0, 0xffff
 andi t1, t1, 0xffff
 sub t0, t0, 0x2b
 sub t1, t1, 0x18
test_if_7200:
 bnez t0, test_if_7100
 nop
 j done_lpr
 nop
test_if_7100:
 bnez t1, sangam_dsl_workaround
 nop
 j done_lpr
 nop

sangam_dsl_workaround:
….

 PSP

Version 0.6

Strictly private and confidential protected by NDA 16 of 24

3 Changes in PSP Linux image

3.1 CVR Register

The CVR register has been updated in TNETD7200. Its value is 0x2B.

The following macro can be used in order to determine that the system is running on
TNETD7200 chip:

#define IS_OHIO_CHIP() ((REG32_R(0xA8610914,15,0) == 0x2b) ? 1:0)

3.2 Clock Configuration

The Linux kernel detects if it is TNETD7200 chip on run time and when TNETD7200 detected it
uses a special clock configuration function for TNETD7200.

3.2.1 Clock Initialization

In the clock initialization function:
x avalanche_clkc_init , in DSL-PSP 4.5 and previous version.
x Or PAL_sysClkcInit , in DSL-PSP4.6 and upper version.

If TNETD7200 chip is detected the clock initialization function should call to ohioClkInit and do
not perform the same initialization as it does for TNETD7300.

void PAL_sysClkcInit(void* param)
{
 UINT32 choice;

 PAL_SYS_Tnetd73xxInit* ptr = (PAL_SYS_Tnetd73x xInit*)param;
 afeclk_inp = ptr->afeclk;
 refclk_inp = ptr->refclk;
 xtal_inp = ptr->xtal3in;

 bootcr_reg = (volatile int*)AVALANCHE_DCL_BOOTCR;

 if(IS_OHIO_CHIP())
 {
 ohioClkInit(); /*OHIO clock initialization */
 }else
 {
 … /* SANGAM clock initialization */

 }
}

#define BOOTCR_OHIO_MIPS_MIPS2TO1_MODE (1 << 15)
static void ohioClkInit()
{

 unsigned int bootcr_reg = (volatile int*)AVALANCHE _DCL_BOOTCR;

 clk_pll_src[CLKC_MIPS] = &afeclk_inp;
 clk_pll_src[CLKC_VBUS] = &afeclk_inp;
 clk_pll_src[CLKC_USB] = &refclk_inp;

 PSP

Version 0.6

Strictly private and confidential protected by NDA 17 of 24

 //ohio_mips_clk = 211968000;
 /* MIPS_ASYNC MIPS_2to1 MIPS CLOCK SYSTEM CL OCK */
 /* 0 0 125 MHz 125 MHz */
 /* 0 1 211.968 MHz 105.984 MHz */
 /* 1 - 211.968 MHz 125 MHz */

 if(BOOTCR_MIPS_ASYNC_MODE & REG32_DATA(AVALANCHE_DCL_BOOTCR))
 { /* Ohio Async Mode */
 ohio_mips_freq = OHIO_MIPS_MAX_FREQ;
 ohio_sys_freq = OHIO_SYS_MAX_FREQ;

 }
 else
 { /* Ohio Sync Mode */

 /* MIPS 2 To 1 BIT
 0 - The internal system bus frequency of oper ation is equal to
 frequency of the MIPS processor clock. In t his mode the
MIPS
 operates at a frequency of 125Mhz.
 1 - The internal system bus frequency of oper ation is equal to
half
 of the MIPS processor clock
*/

 if(BOOTCR_OHIO_MIPS_MIPS2TO1_MODE & REG32_DATA(AV ALANCHE_DCL_BOOTCR))
 {
 ohio_mips_freq = OHIO_MIPS_MAX_FREQ;
 ohio_sys_freq = ohio_mips_freq/2;
 }
 else
 {
 /* in this case the system clock is equal to MIP S clock*/
 ohio_mips_freq = OHIO_SYS_MAX_FREQ;
 ohio_sys_freq = ohio_mips_freq;
 }
 }

 return;
}

 PSP

Version 0.6

Strictly private and confidential protected by NDA 18 of 24

3.2.2 USB Clock Initialization

For USB clock Configuration the Linux kernel uses the same function as the boot loader
setOhioClockPLL and uses the following values:

#define CLK_ID_OHIO_USB_DIV 1
#define CLK_ID_OHIO_USB_PRE_DIV 13
#define CLK_ID_OHIO_USB_MULT 5

int PAL_sysClkcSetFreq (PAL_SYS_CLKC_ID_T clk_id, u nsigned int output_freq)
{
 int pll_id;

 if(clk_id >= CLKC_NUM)
 return -1;

 pll_id = clk_to_pll[clk_id];

 if(pll_id == CLKC_VBUS)
 return -1;

 if(IS_OHIO_CHIP() && (clk_id != CLKC_USB))
 {
 /* There is no flexible to change the MIPS and SY S clock in Ohio*/
 /* Use the default configuration of the boot load er */
 return -1;
 }

 /* To set USB clock to exactly 48 MHz */
 if((clk_id == CLKC_USB) && (CLK_MHZ(48) == out put_freq))
 {
 if(IS_OHIO_CHIP())
 {
 setOhioClockPLL(CLK_ID_OHIO_USB_MULT-1,CLK_ ID_OHIO_USB_PRE_DIV-1,CLK_ID_OHIO_USB_DIV-
1,clk_id);
 return 0;
 }else
 usb_clk_check();

 }

 return set_pll_div(pll_id,output_freq);
}

….

 PSP

Version 0.6

Strictly private and confidential protected by NDA 19 of 24

3.2.3 Get clock frequency function changes.

Change in the get clock frequency function:

int PAL_sysClkcGetFreq(PAL_SYS_CLKC_ID_T clk_id)
{
 int pll_id;
 int output_freq;

 if(clk_id >= CLKC_NUM)
 {
 return -1;
 }

 if(IS_OHIO_CHIP())
 {
 switch(clk_id)
 {
 case CLKC_SYS:
 return (ohio_sys_freq);

 case CLKC_VBUS:
 return (ohio_sys_freq/2);

 case CLKC_MIPS:
 return (ohio_mips_freq);

 default:
 return -1;

 }
 }

 pll_id = clk_to_pll[clk_id];

 output_freq = get_pll_div(pll_id);

 if(clk_id == CLKC_VBUS)
 output_freq >>= 1;

 return output_freq;

}

….

 PSP

Version 0.6

Strictly private and confidential protected by NDA 20 of 24

3.3 CPMAC configuration changes.

The TNETD7200 chip has only 1 Ethernet interface (CPGMAC0).
Currently there are two compilation options which indicate if the board uses the Low CPMAC or
High CPMAC interface.
Since TNETD7200 has only one CPAMAC interface, when TNETD7200 is detected the SW
uses the definitions of Low CPMAC instead of High CPMAC definitions in run time.
Following the changes in the file sangam.h:

#define AVALANCHE_LOW_CPMAC_RESET_BIT 1 7
/* OHIO has only CPMAC 0 * /
#define AVALANCHE_HIGH_CPMAC_RESET_BIT (IS_OHIO_CHIP()?
AVALANCHE_LOW_CPMAC_RESET_BIT : 21)

#define AVALANCHE_LOW_CPMAC_BASE (KSEG 1_ADDR(0x08610000)) /* AVALANCHE CPMAC 0
*/
/* AVALANCHE CPMAC 1 - OHIO has only CPMAC 0*/
#define AVALANCHE_HIGH_CPMAC_BASE (IS_O HIO_CHIP() ? AVALANCHE_LOW_CPMAC_BASE :
(KSEG1_ADDR(0x08612800)))

#define AVALANCHE_LOW_CPMAC_INT 1 9
/* OHIO has only CPMAC 0 * /
#define AVALANCHE_HIGH_CPMAC_INT (IS_OHIO_CHIP() ? AVALANCHE_LOW_CPMAC_INT :
33)

….

Following the changes in the file sangam_board.h:

#if defined(CONFIG_MIPS_AR7VWI) || defined(AR7VWi) || defined(CONFIG_MIPS_AR7VW) ||
defined(AR7VW) \
 || defined(CONFIG_MIPS_AR7WRD) || defined(AR7WRD)
#define AFECLK_FREQ 35328000
#define REFCLK_FREQ 25000000
#define OSC3_FREQ 24000000
#define AVALANCHE_LOW_CPMAC_PHY_MASK 0x80000000
/* For OHIO use always CPMAC0 * /
#define AVALANCHE_HIGH_CPMAC_PHY_MASK (IS_OHIO_CHIP() ?
AVALANCHE_LOW_CPMAC_PHY_MASK : 0x00010000)
#define AVALANCHE_LOW_CPMAC_MDIX_MASK 0x80000000
#define AVALANCHE_LOW_CPMAC_HAS_EXT_SWITCH (IS_OHIO_CHIP() ? 1 : 0)
#define AVALANCHE_HIGH_CPMAC_HAS_EXT_SWITCH 1
#define VLYNQ0_RESET_GPIO_NUM 18
#define AVALANCHE_NUM_VLYNQ_HOPS_PER_ROOT 1
#endif

 PSP

Version 0.6

Strictly private and confidential protected by NDA 21 of 24

3.4 ATM-DSL changes
Due to the different chips that have to be supported by the ATM-DSL driver and datapump
software, there are some changes in the ATM-DSL driver to accommodate the different
chips and their configurations. There are 3 main changes in the ATM-DSL driver that are
required:

1. Change in the Interrupt vector number for the DSL interrupt.
2. Change in the way the DSP and SAR frequencies are configured, with added

support for boosting the DSP frequency to 250 MHz on some chips.
3. Change in the way that End of Interrupt (EOI) is signaled after servicing the SAR

interrupt.

3.4.1 Change in the Interrupt vector number for the DSL interrupt
The DSL interrupt vector number has been changed from 39 on TNETD7300 to 23 on
TNETD7200. This is something that has to be configured for the different chips.
#define ATM_DSL_INT_SANGAM 39 /* For TNETD7300 */
#define ATM_DSL_INT_OHIO 23 /* For TNETD7200 */

3.4.2 Change in the way the DSP frequency is configured

Note: In order to use the TNETD7200 chip, the DSL-HAL and Datapump versions have to
be 4.0.1.0 or higher.

The DSP frequency and the SAR frequency can be boosted to 250MHz and 62.5MHz
respectively for TNETD7200, as it was for Sangam-250 (7300C). The default DSP
frequency on TNETD7200 is 212 MHz and the SAR frequency is 1/4th of that 53MHz.
This is something that has to be configured from the driver, by calling the appropriate
DSL-HAL functions.

The sequence that should be followed is:

a. The ATM-DSL driver initialization routine must implement the clock selection algorithm
that is shown in the flowchart below, to determine whether it needs to boost the DSP and
SAR clocks. If it return TRUE, then the driver should call the
dslhal_api_boostDspFrequency() to boost the DSP clock as part of the initialization
process.

b. In dslhal_api_dslStartup(), the triggerDsp250MHZ flag is checked, if it’s set (1), will call

an internal function dslhal_support_setDsp250MhzTrigger(), which in turn, will set
mhzFlag in DSP-Host interface to 1, that indicates to the datapump what clock the DSP is
running at.

 PSP

Version 0.6

Strictly private and confidential protected by NDA 22 of 24

The flowchart used for the clock selection is:

chipid?(1)

dsp_noboost?(2)dsp_noboost?(2)

Is 7300C?(3)

Chip revision >=2.3

&& !=5.7 (4)

Lot code
>4208000?(5)

SARFREQ=50Mhz
(7)

SARFREQ=62.5Mhz
(7)

SARFREQ=53Mhz
(7)

Call dslhal_api_boostDspFrequency()

(6)

Initialize dsp as usual

chipid=0x05 chipid=0x18

chipid=0x2B

yes

no
no

yes

yes

no

yes

no

yes

no

200Mhz 250Mhz 212Mhz

7200/7100(new)
71007300/7300A/7300C

buckTrim=111?
(8) 0r 110

no

yes
(7100Trim)

7200/7100A1/7100A2

Fig: 2 Flowchart for the Clock selection Algorithm for TNETD7300 and TNETD7200

 PSP

Version 0.6

Strictly private and confidential protected by NDA 23 of 24

Where the detailed description of the steps is:

(1) Check ChipID: read address 0x08610914 (CVR), bit 15-0. Value could be 0x05
(7300/7300A/7300C), 0x18 (7100) or 0x2B (7200).

(2) Verify the chip needs to run at a higher DSP frequency (not shown on the diagram).

(3) Check if 7300C by reading address 0x0861091C (DIDR2), bit 23 (mask: 0x00800000) is

1 for 7300C.

(4) If device is 7300/7300A and revision 2.3 or higher and not 5.7, then it can use 250Mhz.

Check revision by reading address 0x08610914 (CVR), bit 23-16, value 0x23 or larger,
but not 0x57

(5) Check Lot Code make sure it’s greater than 4208000.
Lot Code is calculated by
#define DIEIDLO (*(volatile unsigned int *) 0xA8610 918
#define DIEIDHI (*(volatile unsigned int *) 0xA8610 91C

LotCode = ((DIEIDHI &0x1FFF)<<10)|((DIEIDLO &0xFFC 00000)>>22);

(6) If device is capable of running dsp at higher frequency then it shall call the

dslhal_api_boostDspFrequency API prior to the dslhal_api_dslStartup API to configure
the DSP to run at 250Mhz frequency.

(7) SAR frequency is DSP frequency divided by 4. If DSP is running at 250MHz, adjust

SAR frequency to “62,500,000” in SAR setup and QoS calculation. Otherwise SAR
clock is set to un-boosted “50,000,000” (dspclock=200Mhz) or “53,000,000”
(dspclock=212Mhz) depends on chip ID.

(8) Check Buck Trim bits by the following sequence:

*((voltatile unsigned int *) 0xA8611600) = ~0x0080 0000; /* Reset DSP */
*((volatile unsigned int *) 0xA1000600) = 0x40; / * unreset DSL-SPA */
regValue = *((volatile unsigned int) 0xA1040018); /* read Trim Status at 32 bit boundary */

buckTrim = (regValue>>8) & 0x07; /* get PM_STATUS 1 at A1040019 */

if (buckTrim==0x07) /* ‘111’ * /
{

/* device is 7200/7100A2 */
}
else if (buckTrim==0x06) /* ‘110’ */
{

/* device is 7100A1 *;
}
else
{

/* Unsupported device. */
}

 PSP

Version 0.6

Strictly private and confidential protected by NDA 24 of 24

3.4.3 Change in the way that End Of Interrupt (EOI) is signaled

Note: In order to use the TNETD7200 chip, the CPSAR version has to be 1.7.2.a or higher.

The End of Interrupt (EOI) register which has to be written to at the end of every SAR
interrupt, has to check whether the return code from the halIsr function is not
EC_NO_ERRORS. If that is not the case then the PacketProcessEnd function, which
signals the EOI shouldn’t be called.

The following code snippet shows how this can be done:

rc = halIsr(((HAL_DEVICE *)priv->pSarHalDev, more);

/* Do the EOI only if no errors are returned. */
if(rc == EC_NO_ERRORS)
{

((HAL_FUNCTIONS *) priv->pSarHalFunc)->PacketProces sEnd((HAL_DEVICE *)priv->pSarHalDev);
}

